Need Assistance?
  • US & Canada:
    +
  • UK: +

Defensin D1

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Defensin D1 is an antibacterial peptide isolated from Spinacia oleracea. It has activity against gram-positive bacteria and gram-negative bacteria.

Category
Functional Peptides
Catalog number
BAT-012689
Synonyms
So-D1; Thr-Cys-Glu-Ser-Pro-Ser-His-Lys-Phe-Lys-Gly-Pro-Cys-Ala-Thr-Asn-Arg-Asn-Cys-Glu-Ser
Sequence
TCESPSHKFKGPCATNRNCES
1. Vitamin D, infections and immunity
Aiten Ismailova, John H White Rev Endocr Metab Disord. 2022 Apr;23(2):265-277. doi: 10.1007/s11154-021-09679-5. Epub 2021 Jul 29.
Vitamin D, best known for its role in skeletal health, has emerged as a key regulator of innate immune responses to microbial threat. In immune cells such as macrophages, expression of CYP27B1, the 25-hydroxyvitamin D 1α-hydroxylase, is induced by immune-specific inputs, leading to local production of hormonal 1,25-dihydroxyvitamin D (1,25D) at sites of infection, which in turn directly induces the expression of genes encoding antimicrobial peptides. Vitamin D signaling is active upstream and downstream of pattern recognition receptors, which promote front-line innate immune responses. Moreover, 1,25D stimulates autophagy, which has emerged as a mechanism critical for control of intracellular pathogens such as M. tuberculosis. Strong laboratory and epidemiological evidence links vitamin D deficiency to increased rates of conditions such as dental caries, as well as inflammatory bowel diseases arising from dysregulation of innate immune handling intestinal flora. 1,25D is also active in signaling cascades that promote antiviral innate immunity; 1,25D-induced expression of the antimicrobial peptide CAMP/LL37, originally characterized for its antibacterial properties, is a key component of antiviral responses. Poor vitamin D status is associated with greater susceptibility to viral infections, including those of the respiratory tract. Although the severity of the COVID-19 pandemic has been alleviated in some areas by the arrival of vaccines, it remains important to identify therapeutic interventions that reduce disease severity and mortality, and accelerate recovery. This review outlines of our current knowledge of the mechanisms of action of vitamin D signaling in the innate immune system. It also provides an assessment of the therapeutic potential of vitamin D supplementation in infectious diseases, including an up-to-date analysis of the putative benefits of vitamin D supplementation in the ongoing COVID-19 crisis.
2. Emerging Roles of Vitamin D-Induced Antimicrobial Peptides in Antiviral Innate Immunity
John H White Nutrients. 2022 Jan 11;14(2):284. doi: 10.3390/nu14020284.
Vitamin D deficiency, characterized by low circulating levels of calcifediol (25-hydroxyvitamin D, 25D) has been linked to increased risk of infections of bacterial and viral origin. Innate immune cells produce hormonal calcitriol (1,25-dihydroxyvitamin D, 1,25D) locally from circulating calcifediol in response to pathogen threat and an immune-specific cytokine network. Calcitriol regulates gene expression through its binding to the vitamin D receptor (VDR), a ligand-regulated transcription factor. The hormone-bound VDR induces the transcription of genes integral to innate immunity including pattern recognition receptors, cytokines, and most importantly antimicrobial peptides (AMPs). Transcription of the human AMP genes β-defensin 2/defensin-β4 (HBD2/DEFB4) and cathelicidin antimicrobial peptide (CAMP) is stimulated by the VDR bound to promoter-proximal vitamin D response elements. HDB2/DEFB4 and the active form of CAMP, the peptide LL-37, which form amphipathic secondary structures, were initially characterized for their antibacterial actively. Notably, calcitriol signaling induces secretion of antibacterial activity in vitro and in vivo, and low circulating levels of calcifediol are associated with diverse indications characterized by impaired antibacterial immunity such as dental caries and urinary tract infections. However, recent work has also provided evidence that the same AMPs are components of 1,25D-induced antiviral responses, including those against the etiological agent of the COVID-19 pandemic, the SARS-CoV2 coronavirus. This review surveys the evidence for 1,25D-induced antimicrobial activity in vitro and in vivo in humans and presents our current understanding of the potential mechanisms by which CAMP and HBD2/DEFB4 contribute to antiviral immunity.
3. Vitamin D and Immune Regulation: Antibacterial, Antiviral, Anti-Inflammatory
Emma L Bishop, Aiten Ismailova, Sarah Dimeloe, Martin Hewison, John H White JBMR Plus. 2020 Sep 15;5(1):e10405. doi: 10.1002/jbm4.10405. eCollection 2021 Jan.
Regulation of immune function continues to be one of the most well-recognized extraskeletal actions of vitamin D. This stemmed initially from the discovery that antigen presenting cells such as macrophages could actively metabolize precursor 25-hydroxyvitamin D (25D) to active 1,25-dihydroxyvitamin D (1,25D). Parallel observation that activated cells from the immune system expressed the intracellular vitamin D receptor (VDR) for 1,25D suggested a potential role for vitamin D as a localized endogenous modulator of immune function. Subsequent studies have expanded our understanding of how vitamin D exerts effects on both the innate and adaptive arms of the immune system. At an innate level, intracrine synthesis of 1,25D by macrophages and dendritic cells stimulates expression of antimicrobial proteins such as cathelicidin, as well as lowering intracellular iron concentrations via suppression of hepcidin. By potently enhancing autophagy, 1,25D may also play an important role in combatting intracellular pathogens such as M. tuberculosis and viral infections. Local synthesis of 1,25D by macrophages and dendritic cells also appears to play a pivotal role in mediating T-cell responses to vitamin D, leading to suppression of inflammatory T helper (Th)1 and Th17 cells, and concomitant induction of immunotolerogenic T-regulatory responses. The aim of this review is to provide an update on our current understanding of these prominent immune actions of vitamin D, as well as highlighting new, less well-recognized immune effects of vitamin D. The review also aims to place this mechanistic basis for the link between vitamin D and immunity with studies in vivo that have explored a role for vitamin D supplementation as a strategy for improved immune health. This has gained prominence in recent months with the global coronavirus disease 2019 health crisis and highlights important new objectives for future studies of vitamin D and immune function. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Online Inquiry
Verification code
Inquiry Basket