Need Assistance?
  • US & Canada:
    +
  • UK: +

Defensin D6

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Defensin D6 is an antibacterial peptide isolated from Spinacia oleracea. It has activity against gram-positive bacteria, gram-negative bacteria and fungi.

Category
Functional Peptides
Catalog number
BAT-012691
Synonyms
So-D6
Purity
97.2%
Sequence
GIFSNMYXRTPAGYFRGPXGYXXN
Storage
Store at -20°C
1. Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility
Rathi Saravanan, et al. Biotechnol Bioeng. 2014 Jan;111(1):37-49. doi: 10.1002/bit.25003. Epub 2013 Aug 5.
Antimicrobial peptides (AMPs) kill microbes by non-specific membrane permeabilization, making them ideal templates for designing novel peptide-based antibiotics that can combat multi-drug resistant pathogens. For maximum efficacy in vivo and in vitro, AMPs must be biocompatible, salt-tolerant and possess broad-spectrum antimicrobial activity. These attributes can be obtained by rational design of peptides guided by good understanding of peptide structure-function. Toward this end, this study investigates the influence of charge and hydrophobicity on the activity of tryptophan and arginine rich decamer peptides engineered from a salt resistant human β-defensin-28 variant. Mechanistic investigations of the decamers with detergents mimicking the composition of bacterial and mammalian membrane, reveal a correlation between improved antibacterial activity and the increase in tryptophan and positive residue content, while keeping hemolysis low. The potent antimicrobial activity and high cell membrane selective behavior of the two most active decamers, D5 and D6, are attributed to an optimum peptide charge to hydrophobic ratio bestowed by systematic arginine and tryptophan substitution. D5 and D6 show surface localization behavior with binding constants of 1.86 × 10(8) and 2.6 × 10(8) M(-1) , respectively, as determined by isothermal calorimetry measurements. NMR derived structures of D5 and D6 in SDS detergent micelles revealed proximity of Trp and Arg residues in an extended structural scaffold. Such potential cation-π interactions may be critical in cell permeabilization of the AMPs. The fundamental characterization of the engineered decamers provided in this study improves the understanding of structure-activity relationship of short arginine tryptophan rich AMPs, which will pave the way for future de novo design of potent AMPs for therapeutic and biomedical applications.
2. Activity of alpha- and theta-defensins against primary isolates of HIV-1
Wei Wang, Sherry M Owen, Donna L Rudolph, Alexander M Cole, Teresa Hong, Alan J Waring, Renu B Lal, Robert I Lehrer J Immunol. 2004 Jul 1;173(1):515-20. doi: 10.4049/jimmunol.173.1.515.
Theta-defensins are lectin-like, cyclic octadecapeptides found in the leukocytes of nonhuman primates. They are also homologues of the more familiar alpha-defensins expressed by humans and certain other mammals. This study compares the ability of six theta-defensins (hominid retrocyclins 1-3 and rhesus theta-defensins 1-3) and four human alpha-defensins (human neutrophil peptides (HNPs) 1-4) to bind gp120 and CD4. In addition, we compared the ability of these theta-defensins and HNP-1 to protect J53-BL cells (an indicator cell line) from primary HIV-1 isolates that varied in subtype and coreceptor usage. The most potent theta-defensin, retrocyclin-2, bound with exceptionally high affinity to gp120 (K(D), 9.4 nM) and CD4 (K(D), 6.87 nM), and its effectiveness against subtype B isolates (IC(50), 1.05 +/- 0.28 microg/ml; 520 +/- 139 nM) was approximately twice as great as that of HNP-1 on a molar basis. We also show, for the first time, that human alpha-defensins, HNPs 1-3, are lectins that bind with relatively high affinity to gp120 (K(D) range, 15.8-52.8 nM) and CD4 (K(D) range, 8.0-34.9 nM). Proteins found in human and FBS bound exogenous HNP-2 and retrocyclin-1, and competed with their ability to bind gp120. However, even the low concentrations of alpha-defensins found in normal human serum suffice to bind over half of the gp120 spikes on HIV-1 and a higher percentage of cell surface CD4 molecules. Although this report principally concerns the relationship between carbohydrate-binding and the antiviral properties of alpha- and theta-defensins, the lectin-like behavior of defensins may contribute to many other activities of these multifunctional peptides.
Online Inquiry
Verification code
Inquiry Basket