Defensin HNP-3 (human)
Need Assistance?
  • US & Canada:
    +
  • UK: +

Defensin HNP-3 (human)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Others
Catalog number
BAT-015940
CAS number
136661-76-2
Molecular Formula
C150H222N44O38S6
Molecular Weight
3486.04
Defensin HNP-3 (human)
IUPAC Name
(1R,4S,7S,13S,16S,19R,22S,25S,31S,34S,37S,40S,46S,49R,52S,55S,58S,64S,67S,70S,73S,76S,79R,82R,87R,90S)-58-(3-amino-3-oxopropyl)-87-[[(2S)-2-aminopropanoyl]amino]-76-benzyl-7,22,52-tris[(2S)-butan-2-yl]-4,34,37,64-tetrakis(3-carbamimidamidopropyl)-31-(2-carboxyethyl)-46-[(1R)-1-hydroxyethyl]-40,55,90-tris[(4-hydroxyphenyl)methyl]-70-(1H-indol-3-ylmethyl)-16,25,73-trimethyl-67-(2-methylpropyl)-2,5,8,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,88,91-octacosaoxo-84,85,94,95,98,99-hexathia-3,6,9,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,89,92-octacosazatetracyclo[47.43.4.419,79.09,13]hectane-82-carboxylic acid
Synonyms
DEF3; DEFA3; HNP-3; Defensin HNP-3; Neutrophil defensin 3; H-Asp-Cys-Tyr-Cys-Arg-Ile-Pro-Ala-Cys-Ile-Ala-Gly-Glu-Arg-Arg-Tyr-Gly-Thr-Cys-Ile-Tyr-Gln-Gly-Arg-Leu-Trp-Ala-Phe-Cys-Cys-OH
Density
1.54±0.1 g/cm3
InChI
InChI=1S/C150H222N44O38S6/c1-14-74(6)116-142(227)171-78(10)121(206)166-64-112(200)173-97(49-51-115(203)204)129(214)175-93(32-23-53-162-148(155)156)127(212)174-94(33-24-54-163-149(157)158)128(213)180-99(59-83-36-42-87(196)43-37-83)125(210)168-66-114(202)190-119(81(13)195)144(229)188-108-71-236-233-68-105-136(221)176-95(34-25-55-164-150(159)160)130(215)193-118(76(8)16-3)145(230)194-56-26-35-110(194)141(226)170-80(12)123(208)185-107(139(224)191-116)70-235-234-69-106(138(223)189-109(146(231)232)72-238-237-67-104(184-120(205)77(9)151)137(222)181-101(135(220)186-105)60-84-38-44-88(197)45-39-84)187-134(219)100(58-82-27-18-17-19-28-82)178-122(207)79(11)169-131(216)103(62-86-63-165-91-30-21-20-29-90(86)91)182-132(217)98(57-73(4)5)179-126(211)92(31-22-52-161-147(153)154)172-113(201)65-167-124(209)96(48-50-111(152)199)177-133(218)102(61-85-40-46-89(198)47-41-85)183-143(228)117(75(7)15-2)192-140(108)225/h17-21,27-30,36-47,63,73-81,92-110,116-119,165,195-198H,14-16,22-26,31-35,48-62,64-72,151H2,1-13H3,(H2,152,199)(H,166,206)(H,167,209)(H,168,210)(H,169,216)(H,170,226)(H,171,227)(H,172,201)(H,173,200)(H,174,212)(H,175,214)(H,176,221)(H,177,218)(H,178,207)(H,179,211)(H,180,213)(H,181,222)(H,182,217)(H,183,228)(H,184,205)(H,185,208)(H,186,220)(H,187,219)(H,188,229)(H,189,223)(H,190,202)(H,191,224)(H,192,225)(H,193,215)(H,203,204)(H,231,232)(H4,153,154,161)(H4,155,156,162)(H4,157,158,163)(H4,159,160,164)/t74-,75-,76-,77-,78-,79-,80-,81+,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,103-,104-,105-,106-,107-,108-,109-,110-,116-,117-,118-,119-/m0/s1
InChI Key
KRJOFJHOZZPBKI-KSWODRSDSA-N
Canonical SMILES
CCC(C)C1C(=O)NC(C(=O)NCC(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NCC(=O)NC(C(=O)NC2CSSCC3C(=O)NC(C(=O)NC(C(=O)N4CCCC4C(=O)NC(C(=O)NC(CSSCC(C(=O)NC(CSSCC(C(=O)NC(C(=O)N3)CC5=CC=C(C=C5)O)NC(=O)C(C)N)C(=O)O)NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)CNC(=O)C(NC(=O)C(NC(=O)C(NC2=O)C(C)CC)CC6=CC=C(C=C6)O)CCC(=O)N)CCCNC(=N)N)CC(C)C)CC7=CNC8=CC=CC=C87)C)CC9=CC=CC=C9)C(=O)N1)C)C(C)CC)CCCNC(=N)N)C(C)O)CC1=CC=C(C=C1)O)CCCNC(=N)N)CCCNC(=N)N)CCC(=O)O)C
1. Determination of defensin HNP-1, HNP-2, and HNP-3 in human saliva by using LC/MS
C Goebel, L G Mackay, E R Vickers, L E Mather Peptides. 2000 Jun;21(6):757-65. doi: 10.1016/s0196-9781(00)00205-9.
The mass spectral profiling of saliva by liquid chromatography mass spectrometry in relation to particular types of pain is being examined. The aim is to develop a profile that could be useful for the assessment of patients and their treatment programs, as well as identifying unknown compounds observed in saliva. Defensin human neutrophil peptide-1 (HNP-1) and defensin HNP-2 were identified and confirmed, whereas defensin HNP-3 was tentatively identified. Linear calibration range of defensin HNP-1 and HNP-2 was 0.25 to 3 microg/ml with R(2) values of > 0.99 for both. The detection limit for defensin HNP-1 and HNP-2 was estimated at 0.1 microg/ml. The healthy subjects surveyed in this study had readily measurable salivary concentrations of defensin HNP-1 (8.6 +/- SD 8.0 microg/ml) and defensin HNP-2 (5.6 +/- SD 5.2 microg/ml).
2. Upregulated expression of human neutrophil peptides 1, 2 and 3 (HNP 1-3) in colon cancer serum and tumours: a biomarker study
Jakob Albrethsen, Rikke Bøgebo, Steen Gammeltoft, Jesper Olsen, Benny Winther, Hans Raskov BMC Cancer. 2005 Jan 19;5:8. doi: 10.1186/1471-2407-5-8.
Background: Molecular markers for localized colon tumours and for prognosis following therapy are needed. Proteomics research is currently producing numerous biomarker studies with clinical potential. We investigate the protein composition of plasma and of tumour extracts with the aim of identifying biomarkers for colon cancer. Methods: By Surface Enhanced Laser Desorption/Ionisation--Time Of Flight/Mass spectrometry (SELDI-TOF/MS) we compare the protein profiles of colon cancer serum with serum from healthy individuals and the protein profiles of colon tumours with normal colon tissue. By size exclusion chromatography, we investigate the binding of HNP 1-3 to high mass plasma proteins. By microflow we investigate the effect of HNP 1-3 on mammalian cells. Results: Human Neutrophil Peptides -1, -2 and -3 (HNP 1-3), also known as alfa-defensin-1, -2 and -3, are present in elevated concentrations in serum from colon cancer patients and in protein extracts from colon tumours. A fraction of HNP 1-3 in serum is bound to unidentified high mass plasma proteins. HNP 1-3 purified from colon tumours are lethal to mammalian cells. Conclusions: HNP 1-3 may serve as blood markers for colon cancer in combination with other diagnostic tools. We propose that HNP 1-3 are carried into the bloodstream by attaching to high mass plasma proteins in the tumour microenvironment. We discuss the effect of HNP 1-3 on tumour progression.
3. Relevance of α-defensins (HNP1-3) and defensin β-1 in diabetes
Balázs Csaba Németh, Tamás Várkonyi, Ferenc Somogyvári, Csaba Lengyel, Katalin Fehértemplomi, Szabolcs Nyiraty, Péter Kempler, Yvette Mándi World J Gastroenterol. 2014 Jul 21;20(27):9128-37. doi: 10.3748/wjg.v20.i27.9128.
Aim: To investigate the genetic background of human defensin expression in type 1 and 2 diabetes. Methods: Associations between DEFA1/DEFA3 gene copy number polymorphism and diabetes as well as between the promoter polymorphisms of DEFB1 and diabetes were studied. The copy number variation of the DEFA1/DEFA3 genes was determined in 257 diabetic patients (117 patients with type 1 and 140 with type 2 diabetes). The control group consisted of 221 age- and gender-matched healthy blood donors. The cumulative copy numbers of the DEFA1/DEFA3 genes were detected by using quantitative PCR analysis. To evaluate the HNP 1-3 (human neutrophil peptide 1-3 or α-defensin) levels in the circulation, plasma HNP 1-3 concentrations were measured by ELISA. The expression of DEFA1/A3 in peripheral leukocytes of the diabetic patients was measured by quantitative RT PCR analysis. Three SNPs of the human DEFB1 (human defensin β-1) gene: DEFB1 G-20A (rs11362), DEFB1 C-44G (rs1800972) and DEFB1 G-52A (rs1799946) were genotyped by Custom TaqMan(®) Real Time PCR assay. Results: Significant differences were observed in HNP1-3 levels between the healthy subjects and both groups of diabetic patients. The mean ± SE was 28.78 ± 4.2 ng/mL in type 1 diabetes, and 29.82 ± 5.36 ng/mL in type 2 diabetes, vs 11.94 ± 2.96 ng/mL in controls; P < 0.01 respectively. There was no significant difference between patients with type 1 and type 2 diabetes in the high plasma concentrations of HNP1-3. The highest concentrations of α-defensin were found in diabetic patients with nephropathy (49.4 ± 4.8 ng/mL), neuropathy (38.7 ± 4.8 ng/mL) or cardiovascular complications (45.6 ± 1.45 ng/L). There was no significant difference in the cumulative copy numbers of DEFA1/DEFA3 genes between controls and patients, or between patients with the two types of diabetes. Comparisons of HNP 1-3 plasma level and DEFA1/A3 copy number of the same patient did not reveal significant relationship between defensin-α levels and the gene copy numbers (r (2) = 0.01). Similarly, no positive correlation was observed between the copy numbers and the mRNA expression levels of DEFA1/A3. Regarding the C-44G polymorphism of DEFB1, the GG "protective" genotype was much less frequent (1%-2%) among both groups of patients than among controls (9%). Conclusion: Elevated HNP1-3 levels in diabetes are independent of DEFA1/DEFA3 copy numbers, but GG genotype of C-44G SNP in DEFB1 gene may result in decreased defensin β-1 production.
Online Inquiry
Verification code
Inquiry Basket