des-His1-[Glu9]-Glucagon (1-29) amide
Need Assistance?
  • US & Canada:
    +
  • UK: +

des-His1-[Glu9]-Glucagon (1-29) amide

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

A glucagon receptor antagonist (pA2 = 7.2 for inhibition of glucagon-induced adenylyl cyclase activation in rat liver membranes) that displays no agonist activity. It binds to glucagon receptors to stimulate breakdown of inositol phospholipids by phospholipase C. It was shown to potentiate glucose-stimulated pancreatic insulin release in vitro. It blocks added glucagon-induced hyperglycemia in normal rabbits without affecting glycogenolysis in vivo. Also blocks endogenous glucagon-induced hyperglycemia in streptozocin diabetic rats.

Category
Peptide Inhibitors
Catalog number
BAT-015153
CAS number
110084-95-2
Molecular Formula
C148H221N41O47S
Molecular Weight
3358.68
des-His1-[Glu9]-Glucagon (1-29) amide
IUPAC Name
(4S)-5-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-4-amino-1-[[(2S,3R)-1-amino-3-hydroxy-1-oxobutan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-4-methylsulfanyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-4-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S,3R)-2-[[2-[[(2S)-5-amino-2-[[(2S)-2-amino-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]acetyl]amino]-3-hydroxybutanoyl]amino]-3-phenylpropanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoic acid
Synonyms
(Des-His1,Glu9)-Glucagon (1-29) amide (human, rat, porcine); H-Ser-Gln-Gly-Thr-Phe-Thr-Ser-Glu-Tyr-Ser-Lys-Tyr-Leu-Asp-Ser-Arg-Arg-Ala-Gln-Asp-Phe-Val-Gln-Trp-Leu-Met-Asn-Thr-NH2; L-seryl-L-glutaminyl-glycyl-L-threonyl-L-phenylalanyl-L-threonyl-L-seryl-L-alpha-glutamyl-L-tyrosyl-L-seryl-L-lysyl-L-tyrosyl-L-leucyl-L-alpha-aspartyl-L-seryl-L-arginyl-L-arginyl-L-alanyl-L-glutaminyl-L-alpha-aspartyl-L-phenylalanyl-L-valyl-L-glutaminyl-L-tryptophyl-L-leucyl-L-methionyl-L-asparagyl-L-threoninamide
Appearance
White Lyophilized Solid
Purity
≥95%
Density
1.52±0.1 g/cm3 (Predicted)
Sequence
SQGTFTSEYSKYLDSRRAQDFVQWLMNT-NH2
Storage
Store at -20°C
Solubility
Soluble in DMSO, Water
InChI
InChI=1S/C148H221N41O47S/c1-70(2)54-95(131(221)171-94(49-53-237-11)130(220)179-102(61-111(154)202)140(230)188-117(74(8)194)120(155)210)174-135(225)101(60-81-64-162-86-29-19-18-28-84(81)86)178-128(218)92(43-47-110(153)201)172-144(234)116(72(5)6)187-138(228)99(56-77-24-14-12-15-25-77)177-136(226)103(62-114(206)207)180-127(217)91(42-46-109(152)200)165-121(211)73(7)164-124(214)88(31-22-51-160-147(156)157)167-125(215)89(32-23-52-161-148(158)159)169-142(232)106(68-192)184-137(227)104(63-115(208)209)181-132(222)96(55-71(3)4)173-133(223)97(58-79-33-37-82(197)38-34-79)175-126(216)87(30-20-21-50-149)168-141(231)105(67-191)183-134(224)98(59-80-35-39-83(198)40-36-80)176-129(219)93(44-48-113(204)205)170-143(233)107(69-193)185-146(236)119(76(10)196)189-139(229)100(57-78-26-16-13-17-27-78)182-145(235)118(75(9)195)186-112(203)65-163-123(213)90(41-45-108(151)199)166-122(212)85(150)66-190/h12-19,24-29,33-40,64,70-76,85,87-107,116-119,162,190-198H,20-23,30-32,41-63,65-69,149-150H2,1-11H3,(H2,151,199)(H2,152,200)(H2,153,201)(H2,154,202)(H2,155,210)(H,163,213)(H,164,214)(H,165,211)(H,166,212)(H,167,215)(H,168,231)(H,169,232)(H,170,233)(H,171,221)(H,172,234)(H,173,223)(H,174,225)(H,175,216)(H,176,219)(H,177,226)(H,178,218)(H,179,220)(H,180,217)(H,181,222)(H,182,235)(H,183,224)(H,184,227)(H,185,236)(H,186,203)(H,187,228)(H,188,230)(H,189,229)(H,204,205)(H,206,207)(H,208,209)(H4,156,157,160)(H4,158,159,161)/t73-,74+,75+,76+,85-,87-,88-,89-,90-,91-,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,103-,104-,105-,106-,107-,116-,117-,118-,119-/m0/s1
InChI Key
RVXSASLSNHDASC-OSWDIKPLSA-N
Canonical SMILES
CC(C)CC(C(=O)NC(CCSC)C(=O)NC(CC(=O)N)C(=O)NC(C(C)O)C(=O)N)NC(=O)C(CC1=CNC2=CC=CC=C21)NC(=O)C(CCC(=O)N)NC(=O)C(C(C)C)NC(=O)C(CC3=CC=CC=C3)NC(=O)C(CC(=O)O)NC(=O)C(CCC(=O)N)NC(=O)C(C)NC(=O)C(CCCNC(=N)N)NC(=O)C(CCCNC(=N)N)NC(=O)C(CO)NC(=O)C(CC(=O)O)NC(=O)C(CC(C)C)NC(=O)C(CC4=CC=C(C=C4)O)NC(=O)C(CCCCN)NC(=O)C(CO)NC(=O)C(CC5=CC=C(C=C5)O)NC(=O)C(CCC(=O)O)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C(CC6=CC=CC=C6)NC(=O)C(C(C)O)NC(=O)CNC(=O)C(CCC(=O)N)NC(=O)C(CO)N
1. Biological activities of des-His1[Glu9]glucagon amide, a glucagon antagonist
R B Merrifield, C G Unson, E M Gurzenda Peptides . 1989 Nov-Dec;10(6):1171-7. doi: 10.1016/0196-9781(89)90010-7.
Hyperglycemia in diabetes mellitus is generally associated with elevated levels of glucagon in the blood. A glucagon analog, des-His1[Glu9]glucagon amide, has been designed and synthesized and found to be an antagonist of glucagon in several systems. It has been a useful tool for investigating the mechanisms of glucagon action and for providing evidence that glucagon is a contributing factor in the pathogenesis of diabetes. The in vitro and in vivo activities of the antagonist are reported here. The analog bound 40% as well as glucagon to liver membranes, but did not stimulate the release of cyclic AMP even at 10(6) higher concentration. However, it did activate a second pathway, with the release of inositol phosphates. In addition, the analog enhanced the glucose-stimulated release of insulin from pancreatic islet cells. Of particular importance were the findings that the antagonist also showed only very low activity (less than 0.2%) in the in vivo glycogenolysis assay, and that at a ratio of 100:1 the analog almost completely blocked the hyperglycemic effects of added glucagon in normal rabbits. In addition, it reduced the hyperglycemia produced by endogenous glucagon in streptozotocin diabetic rats. Thus, we have an analog that possesses properties that are necessary for a glucagon antagonist to be potentially useful in the study and treatment of diabetes.
2. Effects of glucagon and glucagon-like peptide-1 on glucocorticoid secretion of dispersed rat adrenocortical cells
G G Nussdorfer, P G Andreis, L K Malendowicz, C Tortorella, G Neri Life Sci . 1999;64(24):2187-97. doi: 10.1016/s0024-3205(99)00170-8.
The effects of glucagon and glucagon-like peptide-1 (GLP-1) on the secretory activity of rat adrenocortical cells have been investigated in vitro. Neither hormones affected basal or agonist-stimulated aldosterone secretion of dispersed rat zona glomerulosa cells or basal corticosterone production of zona fasciculata-reticularis (inner) cells. In contrast, glucagon and GLP-1 partially (40%) inhibited ACTH (10(-9) M)-enhanced corticosterone secretion of inner cells, maximal effective concentration being 10(-7) M. The effect of 10(-7) M glucagon or GPL-1 was suppressed by 10(-6) M Des-His1-[Glu9]-glucagon amide (glucagon-A) and exendin-4(3-39) (GPL-1-A), which are selective antagonists of glucagon and GLP-1 receptors, respectively. Glucagon and GLP-1 (10(-7) M) decreased by about 45-50% cyclic-AMP production by dispersed inner adrenocortical cells in response to ACTH (10(-9) M), but not to the adenylate cyclase activator forskolin (10(-5) M). Again this effect was blocked by 10(-6) M glucagon-A or GLP-1-A. The exposure of dispersed inner cells to 10(-7) M glucagon plus GLP-1 completely suppressed corticosterone response to ACTH (10(-9) M). However, they only partially inhibited (by about 65-70%) both corticosterone response to forskolin (10(-5) M) or dibutyryl-cyclic-AMP (10(-5) M) and ACTH (10(-9) M)-enhanced cyclic-AMP production. Quantitative HPLC showed that 10(-7) M glucagon or GLP-1 did not affect ACTH-stimulated pregnenolone production, evoked a slight rise in progesterone and 11-deoxycorticosterone release, and markedly reduced (by about 55%) corticosterone secretion of dispersed inner adrenocortical cells. In light of these findings the following conclusion are drawn: (i) glucagon and GLP-1, via the activation of specific receptors, inhibit glucocorticoid response of rat adrenal cortex to ACTH; and (ii) the mechanism underlying the effect of glucagon and GLP-1 is probably two-fold, and involves both the inhibition of the ACTH-induced activation of adenylate cyclase and the impairment of the late steps of glucocorticoid synthesis.
3. Glucagon-like peptide-1 inhibits insulinotropic effects of oxyntomodulin and glucagon in cattle
S ThanThan, T Saito, S Yannaing, H Kuwayama, K Nakashima, H Zhao Domest Anim Endocrinol . 2012 Apr;42(3):155-64. doi: 10.1016/j.domaniend.2011.11.004.
Oxyntomodulin (OXM), glucagon, and glucagon-like peptide-1 (GLP-1), peptide hormones derived from the glucagon gene, play an important role in glucose homeostasis. The insulinotropic action of these three homologous peptides has been well documented in monogastric animals. However, information on the relationships among these peptides in insulin-releasing action, specifically in ruminants, is still insufficient. In this regard, we carried out two experiments in cattle. In experiment 1, effects of glucagon and GLP-1 on plasma insulin and glucose were investigated in 10-mo-old Holstein steers (347 ± 8 kg, n = 8) under normoglycemic conditions. Peptides were administered intravenously at dose rates of 0.12, 0.25, 0.50, and 1.25 nmol/kg body weight (BW). In experiment 2, the relationships among OXM, glucagon, and GLP-1 in the insulinotropic and glucoregulatory actions were elucidated in 3-mo-old Holstein steers (94 ± 2 kg, n = 8) using agonist-antagonist strategy. In agonist strategy, these three peptides were administered alone or coadministered at dose rates of 10 μg of OXM/kg BW, 4 μg of glucagon/kg BW, and 2 μg of GLP-1/kg BW. In antagonist strategy, 2 μg of each peptide was administered alone or in combination with 10 μg of [des His1, des Phe6, Glu9] glucagon amide (a glucagon receptor antagonist) or exendin-4 (5-39) amide (a GLP-1 receptor antagonist). Our results showed that OXM, glucagon, and GLP-1 had insulinotropic actions in ruminants under normoglycemic conditions. Our results also showed that the insulin-releasing effects of OXM and glucagon were mediated through both GLP-1 receptors (GLP-1R) and glucagon receptors. These insulinotropic effects of OXM and glucagon through GLP-1R were inhibited by GLP-1. Our findings expand the relationships among OXM, glucagon, and GLP-1 in the insulinotropic and glucoregulatory actions.
Online Inquiry
Verification code
Inquiry Basket