[Des-octanoyl]-Ghrelin (human)
Need Assistance?
  • US & Canada:
    +
  • UK: +

[Des-octanoyl]-Ghrelin (human)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

[Des-octanoyl]-Ghrelin (human) is the major circulating isoform of ghrelin that does not bind to the ghrelin receptor (GHS-R1a), nor induce growth hormone release. It exhibits negative inotropic effects in papillary muscle and cardioprotective activity. It also displays an inhibitory effect on cell proliferation in breast and prostate cancer cell lines.

Category
Peptide Inhibitors
Catalog number
BAT-010703
CAS number
313951-59-6
Molecular Formula
C141H235N47O41
Molecular Weight
3244.51
[Des-octanoyl]-Ghrelin (human)
IUPAC Name
(4S)-4-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[(2-aminoacetyl)amino]-3-hydroxypropanoyl]amino]-3-hydroxypropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxypropanoyl]pyrrolidine-2-carbonyl]amino]-5-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-6-amino-1-[(2S)-2-[(2S)-2-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-5-amino-1-[(2S)-2-[[(1S)-4-carbamimidamido-1-carboxybutyl]carbamoyl]pyrrolidin-1-yl]-1,5-dioxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxopropan-2-yl]carbamoyl]pyrrolidine-1-carbonyl]pyrrolidin-1-yl]-1-oxohexan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-1-oxohexan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-5-oxopentanoic acid
Synonyms
UNII-XEW3CUX2ZE; XEW3CUX2ZE
Sequence
GSSFLSPEHQRVQQRKESKKPPAKLQPR
Storage
Store at -20°C
InChI
InChI=1S/C141H235N47O41/c1-73(2)62-92(123(213)175-90(42-48-107(150)196)135(225)185-58-22-37-102(185)132(222)176-91(138(228)229)34-21-57-160-141(155)156)177-116(206)79(28-11-15-51-142)164-112(202)76(7)162-130(220)100-35-24-60-187(100)137(227)103-38-25-61-188(103)134(224)89(31-14-18-54-145)174-115(205)81(30-13-17-53-144)168-128(218)97(69-190)181-121(211)87(43-49-109(198)199)170-113(203)80(29-12-16-52-143)165-114(204)82(32-19-55-158-139(151)152)166-117(207)84(39-45-104(147)193)169-119(209)86(41-47-106(149)195)173-133(223)111(75(5)6)184-122(212)83(33-20-56-159-140(153)154)167-118(208)85(40-46-105(148)194)171-126(216)95(65-78-67-157-72-161-78)180-120(210)88(44-50-110(200)201)172-131(221)101-36-23-59-186(101)136(226)99(71-192)183-124(214)93(63-74(3)4)178-125(215)94(64-77-26-9-8-10-27-77)179-129(219)98(70-191)182-127(217)96(68-189)163-108(197)66-146/h8-10,26-27,67,72-76,79-103,111,189-192H,11-25,28-66,68-71,142-146H2,1-7H3,(H2,147,193)(H2,148,194)(H2,149,195)(H2,150,196)(H,157,161)(H,162,220)(H,163,197)(H,164,202)(H,165,204)(H,166,207)(H,167,208)(H,168,218)(H,169,209)(H,170,203)(H,171,216)(H,172,221)(H,173,223)(H,174,205)(H,175,213)(H,176,222)(H,177,206)(H,178,215)(H,179,219)(H,180,210)(H,181,211)(H,182,217)(H,183,214)(H,184,212)(H,198,199)(H,200,201)(H,228,229)(H4,151,152,158)(H4,153,154,159)(H4,155,156,160)/t76?,79-,80-,81-,82-,83-,84-,85-,86-,87-,88-,89-,90-,91-,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,103-,111-/m0/s1
InChI Key
BGHSOEHUOOAYMY-QIGGUMDYSA-N
Canonical SMILES
CC(C)CC(C(=O)NC(CCC(=O)N)C(=O)N1CCCC1C(=O)NC(CCCNC(=N)N)C(=O)O)NC(=O)C(CCCCN)NC(=O)C(C)NC(=O)C2CCCN2C(=O)C3CCCN3C(=O)C(CCCCN)NC(=O)C(CCCCN)NC(=O)C(CO)NC(=O)C(CCC(=O)O)NC(=O)C(CCCCN)NC(=O)C(CCCNC(=N)N)NC(=O)C(CCC(=O)N)NC(=O)C(CCC(=O)N)NC(=O)C(C(C)C)NC(=O)C(CCCNC(=N)N)NC(=O)C(CCC(=O)N)NC(=O)C(CC4=CNC=N4)NC(=O)C(CCC(=O)O)NC(=O)C5CCCN5C(=O)C(CO)NC(=O)C(CC(C)C)NC(=O)C(CC6=CC=CC=C6)NC(=O)C(CO)NC(=O)C(CO)NC(=O)CN
1. Ghrelin as a novel locally produced relaxing peptide of the iris sphincter and dilator muscles
J Saraiva,F Falcão-Reis,A Rocha-Sousa,T Henriques-Coelho,J Correia-Pinto,A F Leite-Moreira Exp Eye Res . 2006 Nov;83(5):1179-87. doi: 10.1016/j.exer.2006.06.005.
Ghrelin is a recently described acylated peptide, which works as a somatosecretagogue and has described effects on the smooth, skeletal and cardiac muscle. We examined the production and effects of ghrelin on relaxation of the iris muscles. Contractile effects of 1-5 human ghrelin (frGhr, 10(-9)-6 x 10(-5)M) and 1-5 human des-octanoyl-ghrelin (d-frGhr; 10(-9)-6 x 10(-5)M) were tested on iris rabbit sphincter (n=11 frGhr; n=7 d-frGhr), dilator (n=6 frGhr; n=6 d-frGhr) and rat sphincter (n=6 frGhr; n=8 d-frGhr) precontracted muscles. On rabbit sphincter the effect of frGhr was also tested in presence of: i) L-NA (10(-5)M; n=7); ii) indomethacin (10(-5)M; n=7); iii) DLys(3)GHRP6 (10(-4)M; n=6); and iv) apamin+carybdotoxin (10(-6)M; n=6). Furthermore, on rabbit dilator the effect of frGhr was tested in presence of DLys(3)GHRP6 (10(-4)M; n=7). Finally, ghrelin mRNA production was assessed by "in situ" hybridization in Wistar rat eyes (n=8). In all muscles, frGhr promoted a concentration-dependent relaxation, maximal at 6 x 10(-5)M, 1.5-3 min after its addition, decreasing tension by 34.1+/-12.1%, 25.8+/-4.8% and 52.1+/-10.3% in the rabbit sphincter, dilator and rat sphincter, respectively. In the rabbit sphincter the relaxing effects of frGhr were: (i) enhanced in presence of DLys(3)GHRP6 (118.1+/-21.1%); (ii) blunted by indomethacin; and (iii) not altered by apamin+carybdotoxin (36.4+/-14.4%) or L-NA (52.4+/-11.4%). Relaxing effects of d-frGhr in rabbit (43.3+/-5.2%) and rat (77.1+/-15.3%) sphincter muscles were similar to those of frGhr. In rabbit dilator muscle, d-frGhr did not significantly alter active tension and the relaxing effect of frGhr was blunted by GHSR-1a blockage. Ghrelin mRNA was identified in iris posterior epithelium. In conclusion, ghrelin is a novel, locally produced, relaxing agent of iris dilator and sphincter muscles, an effect that is mediated by GHSR-1a in the former, but not in the latter. Furthermore, in the sphincter it seems to be mediated by prostaglandins, but not by NO or K(Ca) channels.
2. Extent and direction of ghrelin transport across the blood-brain barrier is determined by its unique primary structure
Matthias Tschöp,Mark L Heiman,Sandra M Robinson,William A Banks J Pharmacol Exp Ther . 2002 Aug;302(2):822-7. doi: 10.1124/jpet.102.034827.
The novel hormone ghrelin is a potent orexigen that may counterbalance leptin. Ghrelin is the only secreted molecule requiring post-translational acylation with octanoic acid to ensure bioactivity. Ghrelin, predominantly derived from the stomach, may target neuroendocrine networks within the central nervous system (CNS) to regulate energy homeostasis. This would require ghrelin to cross the blood-brain barrier (BBB). In mice, we examined whether ghrelin crosses the BBB and whether its lipophilic side chain is involved in this process. We found that saturable systems transported human ghrelin from brain-to-blood and from blood-to-brain. Mouse ghrelin, differing from human ghrelin by two amino acids, was a substrate for the brain-to-blood but not for the blood-to-brain transporter and so entered the brain to a far lesser degree. des-Octanoyl ghrelin entered the brain by nonsaturable transmembrane diffusion and was sequestered once within the CNS. In summary, we show that ghrelin transport across the BBB is a complex, highly regulated bidirectional process. The direction and extent of passage are determined by the primary structure of ghrelin, defining a new role for the unique post-translational octanoylation.
3. Characterisation of proghrelin peptides in mammalian tissue and plasma
Angela S Bang,Tim G Yandle,A Mark Richards,Steven G Soule,Chris J Pemberton J Endocrinol . 2007 Feb;192(2):313-23. doi: 10.1677/JOE-06-0021.
Ghrelin is a 28 amino acid stomach peptide, derived from proghrelin(1-94), that stimulates GH release, appetite and adipose deposition. Recently, a peptide derived from proghrelin(53-75) -- also known as obestatin -- has been reported to be a physiological antagonist of ghrelin in the rat. Using four specific RIAs, we provide the first characterisation of proghrelin(1-94) peptides in human plasma, their modulation by metabolic manipulation and their distribution in mammalian tissues. ghrelin(1-28) immunoreactivity (IR) in human plasma and rat plasma/stomach consisted of major des-octanoyl and minor octanoylated forms, as determined by HPLC/RIA. Human plasma ghrelin(1-28) IR was significantly suppressed by food intake, oral glucose and 1 mg s.c. glucagon administration. ghrelin(1-28) IR and proghrelin(29-94) IR peptide distributions in the rat indicated that the stomach and gastrointestinal tract contain the highest amounts of the peptides. Human and rat plasma and rat stomach extracts contained a major IR peak of proghrelin(29-94)-like peptide as determined by HPLC/RIA, whereas no obestatin IR was observed. Human plasma proghrelin(29-94)-like IR positively correlated with ghrelin(1-28) IR, was significantly suppressed by food intake and oral glucose and shared with ghrelin(1-28) IR a negative correlation with body mass index. We found no evidence for the existence of obestatin as a unique, endogenous peptide. Rather, our data suggest that circulating and stored peptides derived from the carboxyl terminal of proghrelin (C-ghrelin) are consistent in length with proghrelin(29-94) and respond to metabolic manipulation, at least in man, in similar fashion to ghrelin(1-28).
4. Heterogeneity of ghrelin/growth hormone secretagogue receptors. Toward the understanding of the molecular identity of novel ghrelin/GHS receptors
Giampiero Muccioli,Ezio Ghigo,Riccarda Granata,Mauro Papotti,Alessandra Baragli Neuroendocrinology . 2007;86(3):147-64. doi: 10.1159/000105141.
Ghrelin is a gastric polypeptide displaying strong GH-releasing activity by activation of the type 1a GH secretagogue receptor (GHS-R1a) located in the hypothalamus-pituitary axis. GHS-R1a is a G-protein-coupled receptor that, upon the binding of ghrelin or synthetic peptidyl and non-peptidyl ghrelin-mimetic agents known as GHS, preferentially couples to G(q), ultimately leading to increased intracellular calcium content. Beside the potent GH-releasing action, ghrelin and GHS influence food intake, gut motility, sleep, memory and behavior, glucose and lipid metabolism, cardiovascular performances, cell proliferation, immunological responses and reproduction. A growing body of evidence suggests that the cloned GHS-R1a alone cannot be the responsible for all these effects. The cloned GHS-R1b splice variant is apparently non-ghrelin/GHS-responsive, despite demonstration of expression in neoplastic tissues responsive to ghrelin not expressing GHS-R1a; GHS-R1a homologues sensitive to ghrelin are capable of interaction with GHS-R1b, forming heterodimeric species. Furthermore, GHS-R1a-deficient mice do not show evident abnormalities in growth and diet-induced obesity, suggesting the involvement of another receptor. Additional evidence of the existence of another receptor is that ghrelin and GHS do not always share the same biological activities and activate a variety of intracellular signalling systems besides G(q). The biological actions on the heart, adipose tissue, pancreas, cancer cells and brain shared by ghrelin and the non-acylated form of ghrelin (des-octanoyl ghrelin), which does not bind GHS-R1a, represent the best evidence for the existence of a still unknown, functionally active binding site for this family of molecules. Finally, located in the heart and blood vessels is the scavenger receptor CD36, involved in the endocytosis of the pro-atherogenic oxidized low-density lipoproteins, which is a pharmacologically and structurally distinct receptor for peptidyl GHS and not for ghrelin. This review highlights the most recently discovered features of GHS-R1a and the emerging evidence for a novel group of receptors that are not of the GHS1a type; these appear involved in the transduction of the multiple levels of information provided by GHS and ghrelin.
Online Inquiry
Verification code
Inquiry Basket