[Des-octanoyl]-Ghrelin (rat)
Need Assistance?
  • US & Canada:
    +
  • UK: +

[Des-octanoyl]-Ghrelin (rat)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

[Des-octanoyl]-Ghrelin (rat) is the major circulating isoform of ghrelin that does not bind to the ghrelin receptor (GHS-R1a), nor induce growth hormone release.

Category
Peptide Inhibitors
Catalog number
BAT-010141
CAS number
307950-60-3
Molecular Formula
C139H231N45O41
Molecular Weight
3188.63
[Des-octanoyl]-Ghrelin (rat)
IUPAC Name
(4S)-4-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[(2-aminoacetyl)amino]-3-hydroxypropanoyl]amino]-3-hydroxypropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxypropanoyl]pyrrolidine-2-carbonyl]amino]-5-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-6-amino-1-[(2S)-2-[(2S)-2-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-5-amino-1-[(2S)-2-[[(1S)-4-carbamimidamido-1-carboxybutyl]carbamoyl]pyrrolidin-1-yl]-1,5-dioxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxopropan-2-yl]carbamoyl]pyrrolidine-1-carbonyl]pyrrolidin-1-yl]-1-oxohexan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-1-oxohexan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxohexan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-5-oxopentanoic acid
Synonyms
Des-acyl ghrelin (rat)
Appearance
White or Off-white Lyophilized Powder
Density
1.5±0.1 g/cm3
Sequence
GSSFLSPEHQKAQQRKESKKPPAKLQPR
Storage
Store at -20°C
InChI
InChI=1S/C139H231N45O41/c1-73(2)62-92(123(210)172-90(42-48-107(149)192)134(221)181-58-22-37-102(181)132(219)173-91(137(224)225)34-21-57-156-139(152)153)174-117(204)80(29-11-16-52-141)161-112(199)76(6)159-130(217)100-35-24-60-183(100)136(223)103-38-25-61-184(103)133(220)89(32-14-19-55-144)171-116(203)82(31-13-18-54-143)166-128(215)97(69-186)178-122(209)87(43-49-109(194)195)168-114(201)81(30-12-17-53-142)164-115(202)83(33-20-56-155-138(150)151)165-119(206)85(40-46-105(147)190)167-118(205)84(39-45-104(146)189)162-111(198)75(5)158-113(200)79(28-10-15-51-140)163-120(207)86(41-47-106(148)191)169-126(213)95(65-78-67-154-72-157-78)177-121(208)88(44-50-110(196)197)170-131(218)101-36-23-59-182(101)135(222)99(71-188)180-124(211)93(63-74(3)4)175-125(212)94(64-77-26-8-7-9-27-77)176-129(216)98(70-187)179-127(214)96(68-185)160-108(193)66-145/h7-9,26-27,67,72-76,79-103,185-188H,10-25,28-66,68-71,140-145H2,1-6H3,(H2,146,189)(H2,147,190)(H2,148,191)(H2,149,192)(H,154,157)(H,158,200)(H,159,217)(H,160,193)(H,161,199)(H,162,198)(H,163,207)(H,164,202)(H,165,206)(H,166,215)(H,167,205)(H,168,201)(H,169,213)(H,170,218)(H,171,203)(H,172,210)(H,173,219)(H,174,204)(H,175,212)(H,176,216)(H,177,208)(H,178,209)(H,179,214)(H,180,211)(H,194,195)(H,196,197)(H,224,225)(H4,150,151,155)(H4,152,153,156)/t75-,76-,79-,80-,81-,82-,83-,84-,85-,86-,87-,88-,89-,90-,91-,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,103-/m0/s1
InChI Key
CMCPTGQGZXKKEH-MGXJLMSJSA-N
Canonical SMILES
CC(C)CC(C(=O)NC(CCC(=O)N)C(=O)N1CCCC1C(=O)NC(CCCNC(=N)N)C(=O)O)NC(=O)C(CCCCN)NC(=O)C(C)NC(=O)C2CCCN2C(=O)C3CCCN3C(=O)C(CCCCN)NC(=O)C(CCCCN)NC(=O)C(CO)NC(=O)C(CCC(=O)O)NC(=O)C(CCCCN)NC(=O)C(CCCNC(=N)N)NC(=O)C(CCC(=O)N)NC(=O)C(CCC(=O)N)NC(=O)C(C)NC(=O)C(CCCCN)NC(=O)C(CCC(=O)N)NC(=O)C(CC4=CNC=N4)NC(=O)C(CCC(=O)O)NC(=O)C5CCCN5C(=O)C(CO)NC(=O)C(CC(C)C)NC(=O)C(CC6=CC=CC=C6)NC(=O)C(CO)NC(=O)C(CO)NC(=O)CN
1. Characterisation of proghrelin peptides in mammalian tissue and plasma
Angela S Bang,Tim G Yandle,A Mark Richards,Steven G Soule,Chris J Pemberton J Endocrinol . 2007 Feb;192(2):313-23. doi: 10.1677/JOE-06-0021.
Ghrelin is a 28 amino acid stomach peptide, derived from proghrelin(1-94), that stimulates GH release, appetite and adipose deposition. Recently, a peptide derived from proghrelin(53-75) -- also known as obestatin -- has been reported to be a physiological antagonist of ghrelin in the rat. Using four specific RIAs, we provide the first characterisation of proghrelin(1-94) peptides in human plasma, their modulation by metabolic manipulation and their distribution in mammalian tissues. ghrelin(1-28) immunoreactivity (IR) in human plasma and rat plasma/stomach consisted of major des-octanoyl and minor octanoylated forms, as determined by HPLC/RIA. Human plasma ghrelin(1-28) IR was significantly suppressed by food intake, oral glucose and 1 mg s.c. glucagon administration. ghrelin(1-28) IR and proghrelin(29-94) IR peptide distributions in the rat indicated that the stomach and gastrointestinal tract contain the highest amounts of the peptides. Human and rat plasma and rat stomach extracts contained a major IR peak of proghrelin(29-94)-like peptide as determined by HPLC/RIA, whereas no obestatin IR was observed. Human plasma proghrelin(29-94)-like IR positively correlated with ghrelin(1-28) IR, was significantly suppressed by food intake and oral glucose and shared with ghrelin(1-28) IR a negative correlation with body mass index. We found no evidence for the existence of obestatin as a unique, endogenous peptide. Rather, our data suggest that circulating and stored peptides derived from the carboxyl terminal of proghrelin (C-ghrelin) are consistent in length with proghrelin(29-94) and respond to metabolic manipulation, at least in man, in similar fashion to ghrelin(1-28).
2. Ghrelin and body weight regulation in the obese Zucker rat in relation to feeding state and dark/light cycle
Sébastien Richy,Bernard Beck,Alain Stricker-Krongrad Exp Biol Med (Maywood) . 2003 Nov;228(10):1124-31. doi: 10.1177/153537020322801005.
Ghrelin is a new orexigenic peptide primarily produced by the stomach but also present in the hypothalamus. It has adipogenic effects when it is chronically injected in rodents but in obese humans, its plasma concentration is decreased. It can reverse the anorectic effects of leptin when it is co-injected with this peptide in the brain ventricles. The Zucker fa/fa rat is a genetic model of obesity related to a default in the leptin receptor. It is characterized by a large dysregulation of numerous hypothalamic peptides but the ghrelin status of this rat has not yet been determined. Through several experiments, we determine in lean and obese Zucker rats its circulating form in the plasma, its tissue levels and/or expression, and studied the influence of different feeding conditions and its light/dark variations. Ghrelin expression was higher in the obese stomach and hypothalamus (P < 0.05 and P < 0.02, respectively). The ratio of [Octanoyl-Ser3]-ghrelin (active form) to [Des-Octanoyl-Ser3]-ghrelin (inactive form) was approximately 1:1 in the stomach and 2:1 in the plasma in lean and obese rats (no differences). After fasting, plasma ghrelin concentrations increased significantly in lean (+ 64%; P < 0.001) and obese (+ 60%; P < 0.02) rats. After 24 hours of refeeding, they returned to their initial ad lib levels. Ghrelin concentrations were higher in obese rats by 69% (P < 0.005), 65% (P < 0.02), and 73% (P < 0.005) in the ad libitum, fast, and refed states respectively. These results indicate that the obese Zucker rat is characterized by increases in the stomach mRNA expression and in peptide release in the circulation. They clearly support a role for ghrelin in the development of obesity in the absence of leptin signaling.
3. Evidence for a role of the GHS-R1a receptors in ghrelin inhibition of gastric acid secretion in the rat
V Sibilia,G Muccioli,F Pagani,V Locatelli,C Netti,V De Luca,D Rapetti,R Deghenghi J Neuroendocrinol . 2006 Feb;18(2):122-8. doi: 10.1111/j.1365-2826.2005.01391.x.
Ghrelin, the endogenous ligand of the GH secretagogue receptor (GHS-R) has been previously shown to inhibit gastric acid secretion in pylorus-ligated rats. Two isoforms of GHS-R have been identified: GHS-R(1a) and GHS-R(1b). The present study aimed: (i) to characterise the type of GHS-R involved in the central gastric inhibitory activity of ghrelin by using des-octanoyl ghrelin, and synthetic GHS-R(1a) agonist (EP1572) and antagonist (D-Lys(3)-GHRP-6) and (ii) to investigate the relationship between ghrelin and cortistatin (CST) in the control of gastric acid secretion by using the natural neuropeptide CST-14 and the synthetic octapeptide CST-8. The specific interactions of all the compounds with GHS-R(1a) were determined by comparing their ability to displace labelled ghrelin or somatostatin from its receptors on rat hypothalamic membranes or on rat cardiomyocyte, respectively. Intracerebroventricular administration of 0.01 and 1 nmol/rat des-octanoyl ghrelin did not affect gastric acid secretion in pylorus-ligated rats, whereas EP1572 either i.c.v. (0.01-1 nmol/rat) or i.p. (10 and 20 nmol/kg) inhibited acid gastric secretion. Preteatment with D-Lys(3)GHRP-6 (3 nmol/rat, i.c.v.) was able to remove the inhibitory action of ghrelin (0.01 nmol/rat, i.c.v.) on gastric acid volume and acid output, thus indicating that the type 1a GHS-R likely mediates the gastric inhibitory action of ghrelin. This is supported by binding data showing that D-Lys(3)GHRP-6, but not des-octanoyl ghrelin, binds to hypothalamic GHS-R. CST-14 (1 nmol/rat, i.c.v.) did not affect either basal or ghrelin inhibition of gastric acid secretion. CST-8 (1 nmol/rat, i.c.v.) was able to counteract the gastric ghrelin response. The observation that CST-14 binds both GHR-S and somatostatin receptors, whereas CST-8 specifically displaces only ghrelin binding, indicates that CST-8 behaves as a GHS-R(1a) antagonist.
4. Ghrelin stimulates gastric emptying but is without effect on acid secretion and gastric endocrine cells
Per Norlén,Rolf Håkanson,Erik Lindström,Charlotta Dornonville de la Cour Regul Pept . 2004 Aug 15;120(1-3):23-32. doi: 10.1016/j.regpep.2004.02.008.
Ghrelin, a recently discovered peptide hormone, is produced by endocrine cells in the stomach, the so-called A-like cells. Ghrelin binds to the growth hormone (GH) secretagogue receptor and releases GH. It is claimed to be orexigenic and to control gastric acid secretion and gastric motility. In this study, we examined the effects of ghrelin, des-Gln14-ghrelin, des-octanoyl ghrelin, ghrelin-18, -10 and -5 (and motilin) on gastric emptying in mice and on gastric acid secretion in chronic fistula rats and pylorus-ligated rats. We also examined whether ghrelin affected the activity of the predominant gastric endocrine cell populations, G cells, ECL cells and D cells. Ghrelin and des-Gln14-ghrelin stimulated gastric emptying in a dose-dependent manner while des-octanoyl ghrelin and motilin were without effect. The C-terminally truncated ghrelin fragments were effective but much less potent than ghrelin itself. Ghrelin, des-Gln14-ghrelin and des-octanoyl ghrelin neither stimulated nor inhibited gastric acid secretion, and ghrelin, finally, did not affect secretion from either G cells, ECL cells or D cells.
Online Inquiry
Verification code
Inquiry Basket