(Des-Thr5)-Glucagon
Need Assistance?
  • US & Canada:
    +
  • UK: +

(Des-Thr5)-Glucagon

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Functional Peptides
Catalog number
BAT-014532
CAS number
1802078-27-8
Molecular Formula
C149H218N42O47S
Molecular Weight
3381.64
IUPAC Name
(3S)-3-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-amino-3-(1H-imidazol-4-yl)propanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]acetyl]amino]-3-phenylpropanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-3-hydroxypropanoyl]amino]hexanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-methylpentanoyl]amino]-3-carboxypropanoyl]amino]-3-hydroxypropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-carbamimidamidopentanoyl]amino]propanoyl]amino]-5-oxopentanoyl]amino]-4-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-4-amino-1-[[(1S,2R)-1-carboxy-2-hydroxypropyl]amino]-1,4-dioxobutan-2-yl]amino]-4-methylsulfanyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-4-oxobutanoic acid
Synonyms
H-His-Ser-Gln-Gly-Phe-Thr-Ser-Asp-Tyr-Ser-Lys-Tyr-Leu-Asp-Ser-Arg-Arg-Ala-Gln-Asp-Phe-Val-Gln-Trp-Leu-Met-Asn-Thr-OH; L-Histidyl-L-seryl-L-glutaminylglycyl-L-phenylalanyl-L-threonyl-L-seryl-L-α-aspartyl-L-tyrosyl-L-seryl-L-lysyl-L-tyrosyl-L-leucyl-L-α-aspartyl-L-seryl-L-arginyl-L-arginyl-L-alanyl-L-glutaminyl-L-α-aspartyl-L-phenylalanyl-L-valyl-L-glutaminyl-L-tryptophyl-L-leucyl-L-methionyl-L-asparaginyl-L-threonine
Appearance
White Lyophilized Powder
Purity
≥95%
Density
1.5±0.1 g/cm3
Sequence
HSQGFTSDYSKYLDSRRAQDFVQWLMNT
Storage
Store at -20°C
Solubility
Soluble in Water
InChI
InChI=1S/C149H218N42O47S/c1-71(2)51-95(130(220)173-94(46-50-239-10)129(219)181-102(59-113(155)203)140(230)191-120(76(9)197)147(237)238)176-134(224)101(57-81-63-163-87-28-18-17-27-85(81)87)180-128(218)93(42-45-112(154)202)174-145(235)118(73(5)6)189-139(229)100(54-78-25-15-12-16-26-78)179-135(225)103(60-115(205)206)182-127(217)92(41-44-111(153)201)168-121(211)74(7)166-124(214)89(30-21-48-161-148(156)157)169-125(215)90(31-22-49-162-149(158)159)171-143(233)108(68-194)187-137(227)105(62-117(209)210)183-131(221)96(52-72(3)4)175-132(222)98(55-79-32-36-83(198)37-33-79)177-126(216)88(29-19-20-47-150)170-142(232)107(67-193)186-133(223)99(56-80-34-38-84(199)39-35-80)178-136(226)104(61-116(207)208)184-144(234)109(69-195)188-146(236)119(75(8)196)190-138(228)97(53-77-23-13-11-14-24-77)167-114(204)65-164-123(213)91(40-43-110(152)200)172-141(231)106(66-192)185-122(212)86(151)58-82-64-160-70-165-82/h11-18,23-28,32-39,63-64,70-76,86,88-109,118-120,163,192-199H,19-22,29-31,40-62,65-69,150-151H2,1-10H3,(H2,152,200)(H2,153,201)(H2,154,202)(H2,155,203)(H,160,165)(H,164,213)(H,166,214)(H,167,204)(H,168,211)(H,169,215)(H,170,232)(H,171,233)(H,172,231)(H,173,220)(H,174,235)(H,175,222)(H,176,224)(H,177,216)(H,178,226)(H,179,225)(H,180,218)(H,181,219)(H,182,217)(H,183,221)(H,184,234)(H,185,212)(H,186,223)(H,187,227)(H,188,236)(H,189,229)(H,190,228)(H,191,230)(H,205,206)(H,207,208)(H,209,210)(H,237,238)(H4,156,157,161)(H4,158,159,162)/t74-,75+,76+,86-,88-,89-,90-,91-,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,103-,104-,105-,106-,107-,108-,109-,118-,119-,120-/m0/s1
InChI Key
VGRPUZZVWRLGCR-NURSBNRKSA-N
Canonical SMILES
CC(C)CC(C(=O)NC(CCSC)C(=O)NC(CC(=O)N)C(=O)NC(C(C)O)C(=O)O)NC(=O)C(CC1=CNC2=CC=CC=C21)NC(=O)C(CCC(=O)N)NC(=O)C(C(C)C)NC(=O)C(CC3=CC=CC=C3)NC(=O)C(CC(=O)O)NC(=O)C(CCC(=O)N)NC(=O)C(C)NC(=O)C(CCCNC(=N)N)NC(=O)C(CCCNC(=N)N)NC(=O)C(CO)NC(=O)C(CC(=O)O)NC(=O)C(CC(C)C)NC(=O)C(CC4=CC=C(C=C4)O)NC(=O)C(CCCCN)NC(=O)C(CO)NC(=O)C(CC5=CC=C(C=C5)O)NC(=O)C(CC(=O)O)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C(CC6=CC=CC=C6)NC(=O)CNC(=O)C(CCC(=O)N)NC(=O)C(CO)NC(=O)C(CC7=CNC=N7)N
1. Glucagon Regulation of Energy Expenditure
Maximilian Kleinert, Stephan Sachs, Kirk M Habegger, Susanna M Hofmann, Timo D Müller Int J Mol Sci. 2019 Oct 30;20(21):5407. doi: 10.3390/ijms20215407.
Glucagon's ability to increase energy expenditure has been known for more than 60 years, yet the mechanisms underlining glucagon's thermogenic effect still remain largely elusive. Over the last years, significant efforts were directed to unravel the physiological and cellular underpinnings of how glucagon regulates energy expenditure. In this review, we summarize the current knowledge on how glucagon regulates systems metabolism with a special emphasis on its acute and chronic thermogenic effects.
2. Glucagon's Metabolic Action in Health and Disease
Anja Zeigerer, Revathi Sekar, Maximilian Kleinert, Shelly Nason, Kirk M Habegger, Timo D Müller Compr Physiol. 2021 Apr 1;11(2):1759-1783. doi: 10.1002/cphy.c200013.
Discovered almost simultaneously with insulin, glucagon is a pleiotropic hormone with metabolic action that goes far beyond its classical role to increase blood glucose. Albeit best known for its ability to directly act on the liver to increase de novo glucose production and to inhibit glycogen breakdown, glucagon lowers body weight by decreasing food intake and by increasing metabolic rate. Glucagon further promotes lipolysis and lipid oxidation and has positive chronotropic and inotropic effects in the heart. Interestingly, recent decades have witnessed a remarkable renaissance of glucagon's biology with the acknowledgment that glucagon has pharmacological value beyond its classical use as rescue medication to treat severe hypoglycemia. In this article, we summarize the multifaceted nature of glucagon with a special focus on its hepatic action and discuss the pharmacological potential of either agonizing or antagonizing the glucagon receptor for health and disease. © 2021 American Physiological Society. Compr Physiol 11:1759-1783, 2021.
3. Glucagon Receptor Signaling and Glucagon Resistance
Lina Janah, et al. Int J Mol Sci. 2019 Jul 5;20(13):3314. doi: 10.3390/ijms20133314.
Hundred years after the discovery of glucagon, its biology remains enigmatic. Accurate measurement of glucagon has been essential for uncovering its pathological hypersecretion that underlies various metabolic diseases including not only diabetes and liver diseases but also cancers (glucagonomas). The suggested key role of glucagon in the development of diabetes has been termed the bihormonal hypothesis. However, studying tissue-specific knockout of the glucagon receptor has revealed that the physiological role of glucagon may extend beyond blood-glucose regulation. Decades ago, animal and human studies reported an important role of glucagon in amino acid metabolism through ureagenesis. Using modern technologies such as metabolomic profiling, knowledge about the effects of glucagon on amino acid metabolism has been expanded and the mechanisms involved further delineated. Glucagon receptor antagonists have indirectly put focus on glucagon's potential role in lipid metabolism, as individuals treated with these antagonists showed dyslipidemia and increased hepatic fat. One emerging field in glucagon biology now seems to include the concept of hepatic glucagon resistance. Here, we discuss the roles of glucagon in glucose homeostasis, amino acid metabolism, and lipid metabolism and present speculations on the molecular pathways causing and associating with postulated hepatic glucagon resistance.
Online Inquiry
Verification code
Inquiry Basket