1. Purification and characterization of antimicrobial peptides from the skin secretion of Rana dybowskii
Sukwon S Kim, Myoung Sup Shim, Jiyeol Chung, Doo-Yeon Lim, Byeong Jae Lee Peptides. 2007 Aug;28(8):1532-9. doi: 10.1016/j.peptides.2007.07.002. Epub 2007 Jul 7.
Six antimicrobial peptides designated dybowskins were isolated from the skin secretion of Rana dybowskii, an edible frog in Korea. Dybowskin-1 (FLIGMTHGLICLISRKC) and dybowskin-2 (FLIGMTQGLICLITRKC) were isoforms differing in only two amino acid residues at the 7th and 14th positions from the N-terminus, and they showed amino acid sequence similarities with ranalexin peptides. Dybowskin-3 (GLFDVVKGVLKGVGKNVAGSLLEQLKCKLSGGC), dybowskin-4 (VWPLGLVICKALKIC), dybowskin-5 (GLFSVVTGVLKAVGKNVAKNVGGSLLEQLKCKISGGC), and dybowskin-6 (FLPLLLAGLPLKLCFLFKKC) differed in both size and sequence, and they were, in terms of amino acid sequence similarities, related to brevinin-2, japonicin-2, esculentin-2, and brevinin-1 peptides, respectively. All the peptides presented in this paper contained Rana-box, the cyclic heptapeptide domain, which is conserved in other antimicrobial peptides derived from the genus Rana. All the dybowskin peptides showed a broad spectrum of antimicrobial activity against the Gram-positive and Gram-negative bacteria (minimum inhibition concentrations (MIC), 12.5 to >100 microg/ml) and against Candida albicans (MIC, 25 to >100 microg/ml). Especially, dybowskin-4 with valine at its N-terminus was the most abundant and showed the strongest antimicrobial activity among all the dybowskin peptides. This result indicates that the dybowskin peptides from R. dybowskii, whose main habitats are mountains or forests, have evolved differently from antimicrobial peptides isolated from other Korean frogs, whose habitats are plain fields.
2. Characterization of antimicrobial peptides isolated from the skin of the Chinese frog, Rana dybowskii
Li-Li Jin, Qiang Li, Shu-Sen Song, Kai Feng, Dian-Bao Zhang, Qiu-Yu Wang, Yu-Hua Chen Comp Biochem Physiol B Biochem Mol Biol. 2009 Oct;154(2):174-8. doi: 10.1016/j.cbpb.2009.05.015. Epub 2009 Jun 17.
The skins of amphibians secrete small antimicrobial peptides that fight infection and are being explored as potential alternatives to conventional antibiotics. In this study we combined mass spectrometry with cDNA sequencing to examine antimicrobial peptides in skin secretions from the Chinese frog Rana dybowskii. Thirteen peptides having precursor sequences that resemble known antimicrobial peptides from this genus were identified, ten of which were members of previously described peptide families based on their primary structures; i.e., brevinin-1, Japonicin-1, brevinin-2 and temporin. The other three peptides from R. dybowskii, which were named dybowskin-1CDYa, dybowskin-2 CDYa and dybowskin-2CDYb, had different amino acid compositions and little sequence similarity to known antimicrobial peptides. The carboxyl terminus of dybowskin-1CDY lacked amidation and is therefore clearly distinct from temporin peptides, whereas dybowskin-2CDYa and dybowskin-2CDYb consisted of 18 amino acids and were rich in Arg residues. Chemically synthesized peptides corresponding to mature dybowskin-1CDYa and dybowskin-2CDYa had strong antimicrobial activity and caused little hemolysis of human erythrocytes, suggesting they may serve as interesting templates for the development of novel antibiotics.