1.Inflammation-induced shift in spinal GABA(A) signaling is associated with a tyrosine kinase-dependent increase in GABA(A) current density in nociceptive afferents.
Zhu Y;Dua S;Gold MS J Neurophysiol. 2012 Nov;108(9):2581-93. doi: 10.1152/jn.00590.2012. Epub 2012 Aug 22.
To account for benzodiazepine-induced spinal analgesia observed in association with an inflammation-induced shift in the influence of the GABA(A) receptor antagonist gabazine on nociceptive threshold, the present study was designed to determine whether persistent inflammation is associated with the upregulation of high-affinity GABA(A) receptors in primary afferents. The cell bodies of afferents innervating the glabrous skin of the rat hind paw were retrogradely labeled, acutely dissociated, and studied before and after the induction of persistent inflammation. A time-dependent increase in GABA(A) current density was observed that was more than twofold by 72 h after the initiation of inflammation. This increase in current density included both high- and low-affinity currents and was restricted to neurons in which GABA increased intracellular Ca(2+). No increases in GABA(A) receptor subunit mRNA or protein were detected in whole ganglia. In contrast, the increased current density was completely reversed by 20-min preincubation with the tyrosine kinase inhibitor genistein and partially reversed with the Src kinase inhibitor PP2. Genistein reversal was partially blocked by the dynamin inhibitor peptide P4.
2.Phosphatidylinositol (4,5)-bisphosphate regulation of N-methyl-D-aspartate receptor channels in cortical neurons.
Mandal M;Yan Z Mol Pharmacol. 2009 Dec;76(6):1349-59. doi: 10.1124/mol.109.058701. Epub 2009 Sep 21.
The membrane phospholipid phosphatidylinositol (4,5)-bisphosphate (PIP(2)) has been implicated in the regulation of several ion channels and transporters. In this study, we examined the impact of PIP(2) on N-methyl-D-aspartate receptors (NMDARs) in cortical neurons. Blocking PIP(2) synthesis by inhibiting phosphoinositide-4 kinase, or stimulating PIP(2) hydrolysis via activation of phospholipase C (PLC), or blocking PIP(2) function with an antibody caused a significant reduction of NMDAR-mediated currents. On the other hand, inhibition of PLC or application of PIP(2) caused an enhancement of NMDAR currents. These electrophysiological effects were accompanied by changes in NMDAR surface clusters induced by agents that manipulate PIP(2) levels. The PIP(2) regulation of NMDAR currents was abolished by the dynamin inhibitory peptide, which blocks receptor internalization. Agents perturbing actin stability prevented PIP(2) regulation of NMDAR currents, suggesting the actin-dependence of this effect of PIP(2). Cofilin, a major actin depolymerizing factor, which has a common binding sequence for actin and PIP(2), was required for PIP(2) regulation of NMDAR currents. It is noteworthy that the PIP(2) regulation of NMDAR channels was impaired in a transgenic mouse model of Alzheimer's disease, probably because of the amyloid-beta disruption of PIP(2) metabolism.
3.CNQX and AMPA inhibit electrical synaptic transmission: a potential interaction between electrical and glutamatergic synapses.
Li Q;Burrell BD Brain Res. 2008 Sep 4;1228:43-57. doi: 10.1016/j.brainres.2008.06.035. Epub 2008 Jun 20.
Electrical synapses play an important role in signaling between neurons and the synaptic connections between many neurons possess both electrical and chemical components. Although modulation of electrical synapses is frequently observed, the cellular processes that mediate such changes have not been studied as thoroughly as plasticity in chemical synapses. In the leech (Hirudo sp), the competitive AMPA receptor antagonist CNQX inhibited transmission at the rectifying electrical synapse of a mixed glutamatergic/electrical synaptic connection. This CNQX-mediated inhibition of the electrical synapse was blocked by concanavalin A (Con A) and dynamin inhibitory peptide (DIP), both of which are known to inhibit endocytosis of neurotransmitter receptors. CNQX-mediated inhibition was also blocked by pep2-SVKI (SVKI), a synthetic peptide that prevents internalization of AMPA-type glutamate receptor. AMPA itself also inhibited electrical synaptic transmission and this AMPA-mediated inhibition was partially blocked by Con A, DIP and SVKI. Low frequency stimulation induced long-term depression (LTD) in both the electrical and glutamatergic components of these synapses and this LTD was blocked by SVKI.