EGFRvIII peptide (PEPvIII)
Need Assistance?
  • US & Canada:
    +
  • UK: +

EGFRvIII peptide (PEPvIII)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

EGFRvIII peptide (PEPvIII), a tumor-specific mutation and a target for anti-tumor immunotherapy, is widely expressed in glioblastoma multiforme (GBM) and other tumors, and its expression enhances tumorigenicity.

Category
Peptide Inhibitors
Catalog number
BAT-009212
CAS number
129112-17-0
Molecular Formula
C70H111N19O24S
Molecular Weight
1634.81
IUPAC Name
(4S)-5-[[(2S)-6-amino-1-[[(2S)-6-amino-1-[[2-[[(2S)-4-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S,3R)-1-[[(2S)-3-carboxy-1-[[(2S)-1-[[(1R)-1-carboxy-2-sulfanylethyl]amino]-3-(1H-imidazol-5-yl)-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-2-oxoethyl]amino]-1-oxohexan-2-yl]amino]-1-oxohexan-2-yl]amino]-4-[[(2S)-2-[[(2S)-2-amino-4-methylpentanoyl]amino]-4-carboxybutanoyl]amino]-5-oxopentanoic acid
Synonyms
H-Leu-Glu-Glu-Lys-Lys-Gly-Asn-Tyr-Val-Val-Thr-Asp-His-Cys-OH; L-leucyl-L-alpha-glutamyl-L-alpha-glutamyl-L-lysyl-L-lysyl-glycyl-L-asparagyl-L-tyrosyl-L-valyl-L-valyl-L-threonyl-L-alpha-aspartyl-L-histidyl-L-cysteine
Purity
≥95%
Density
1.3±0.1 g/cm3
Boiling Point
2021.1±65.0°C at 760 mmHg
Sequence
LEEKKGNYVVTDHC
Storage
Store at -20°C
InChI
InChI=1S/C70H111N19O24S/c1-33(2)24-40(73)58(100)79-43(18-20-52(94)95)61(103)82-44(19-21-53(96)97)62(104)81-42(13-9-11-23-72)60(102)80-41(12-8-10-22-71)59(101)76-30-51(93)78-47(27-50(74)92)64(106)83-45(25-37-14-16-39(91)17-15-37)66(108)87-55(34(3)4)67(109)88-56(35(5)6)68(110)89-57(36(7)90)69(111)85-48(28-54(98)99)65(107)84-46(26-38-29-75-32-77-38)63(105)86-49(31-114)70(112)113/h14-17,29,32-36,40-49,55-57,90-91,114H,8-13,18-28,30-31,71-73H2,1-7H3,(H2,74,92)(H,75,77)(H,76,101)(H,78,93)(H,79,100)(H,80,102)(H,81,104)(H,82,103)(H,83,106)(H,84,107)(H,85,111)(H,86,105)(H,87,108)(H,88,109)(H,89,110)(H,94,95)(H,96,97)(H,98,99)(H,112,113)/t36-,40+,41+,42+,43+,44+,45+,46+,47+,48+,49+,55+,56+,57+/m1/s1
InChI Key
SPTJJLROEVHISZ-FNVAVSIXSA-N
Canonical SMILES
CC(C)CC(C(=O)NC(CCC(=O)O)C(=O)NC(CCC(=O)O)C(=O)NC(CCCCN)C(=O)NC(CCCCN)C(=O)NCC(=O)NC(CC(=O)N)C(=O)NC(CC1=CC=C(C=C1)O)C(=O)NC(C(C)C)C(=O)NC(C(C)C)C(=O)NC(C(C)O)C(=O)NC(CC(=O)O)C(=O)NC(CC2=CN=CN2)C(=O)NC(CS)C(=O)O)N
1. Detection of humoral response in patients with glioblastoma receiving EGFRvIII-KLH vaccines
Robert J Schmittling, et al. J Immunol Methods. 2008 Nov 30;339(1):74-81. doi: 10.1016/j.jim.2008.08.004. Epub 2008 Sep 4.
The epidermal growth factor receptor variant III (EGFRvIII) is a consistent tumor-specific mutation that is widely expressed in glioblastoma multiforme (GBM) and other neoplasms. As such it represents a truly tumor-specific target for antitumor immunotherapy. Although endogenous humoral responses to EGFRvIII have been reported in patients with EGFRvIII-expressing breast cancer, it is not known whether de novo responses can be generated or endogenous responses enhanced with an EGFRvIII-specific vaccine. To assess this in clinical trials, we have developed and validated an immunoassay to measure and isolate anti-EGFRvIII and anti-KLH antibodies from the serum of patients vaccinated with an EGFRvIII-specific peptide (PEPvIII) conjugated to keyhole limpet hemocyanin (KLH). Using magnetic beads with immobilized antigen we captured and detected anti-EGFRvIII and anti-KLH antibodies in serum from patients before and after vaccinations. Using this assay, we found that significant levels of antibody for tumor-specific antigen EGFRvIII (>4 microg/mL) and KLH could be induced after vaccination with PEPvIII-KLH.
2. Enhancing proteasomal processing improves survival for a peptide vaccine used to treat glioblastoma
Mario Fidanza, et al. Sci Transl Med. 2021 Jun 16;13(598):eaax4100. doi: 10.1126/scitranslmed.aax4100.
Despite its essential role in antigen presentation, enhancing proteasomal processing is an unexploited strategy for improving vaccines. pepVIII, an anticancer vaccine targeting EGFRvIII, has been tested in several trials for glioblastoma. We examined 20 peptides in silico and experimentally, which showed that a tyrosine substitution (Y6-pepVIII) maximizes proteasome cleavage and survival in a subcutaneous tumor model in mice. In an intracranial glioma model, Y6-pepVIII showed a 62 and 31% improvement in median survival compared to control animals and pepVIII-vaccinated mice. Y6-pepVIII vaccination altered tumor-infiltrating lymphocyte subsets and expression of PD-1 on intratumoral T cells. Combination with anti-PD-1 therapy cured 45% of the Y6-pepVIII-vaccinated mice but was ineffective for pepVIII-treated mice. Liquid chromatography-tandem mass spectrometry analysis of proteasome-digested pepVIII and Y6-pepVIII revealed that most fragments were similar but more abundant in Y6-pepVIII digests and 77% resulted from proteasome-catalyzed peptide splicing (PCPS). We identified 10 peptides that bound human and murine MHC class I. Nine were PCPS products and only one peptide was colinear with EGFRvIII, indicating that PCPS fragments may be a component of MHC class I recognition. Despite not being colinear with EGFRvIII, two of three PCPS products tested were capable of increasing survival when administered independently as vaccines. We hypothesize that the immune response to a vaccine represents the collective contribution from multiple PCPS and linear products. Our work suggests a strategy to increase proteasomal processing of a vaccine that results in an augmented immune response and enhanced survival in mice.
3. Combination epidermal growth factor receptor variant III peptide-pulsed dendritic cell vaccine with miR-326 results in enhanced killing on EGFRvIII-positive cells
Jianlong Li, Feng Wang, Guangzhi Wang, Ying Sun, Jinquan Cai, Xing Liu, Junhe Zhang, Xiaoyan Lu, Yongli Li, Meng Chen, Lingchao Chen, Chuanlu Jiang Oncotarget. 2017 Apr 18;8(16):26256-26268. doi: 10.18632/oncotarget.15445.
The mutant Type III variant of epidermal growth factor receptor (EGFRvIII) is present in approximately one-third of glioblastoma (GBM) patients. It is never found in normal tissues; therefore, it represents a candidate target for GBM immunotherapy. PEPvIII, a peptide sequence from EGFRvIII, was designed to represent a target of glioma and is presented by MHC I/II complexes. Dendritic cells (DCs) have great potential to sensitize CD4+ T and CD8+ T cells to precisely target and eradicate GBM. Here, we show that PEPvIII could be loaded by DCs and presented to T lymphocytes, especially PEPvIII-specific CTLs, to precisely kill U87-EGFRvIII cells. In addition to inhibiting proliferation and inducing the apoptosis of U87-EGFRvIII cells, miR-326 also reduced the expression of TGF-β1 in the tumour environment, resulting in improved efficacy of T cell activation and killing via suppressing the SMO/Gli2 axis, which at least partially reversed the immunosuppressive environment. Furthermore, combining the EGFRvIII-DC vaccine with miR-326 was more effective in killing U87-EGFRvIII cells compared with the administration of either one alone. This finding suggested that a DC-based vaccine combined with miR-326 may induce more powerful anti-tumour immunity against GBM cells that express a relevant antigen, which provides a promising approach for GBM immunotherapy.
Online Inquiry
Verification code
Inquiry Basket