β-Endorphin, human
Need Assistance?
  • US & Canada:
    +
  • UK: +

β-Endorphin, human

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

β-Endorphin, human is a prominent endogenous peptide existing in the hypophysis cerebri and hypothalamus. β-Endorphin, human is an agonist of opioid receptor, with preferred affinity for μ-opioid receptor and δ-opioid receptor.

Category
Peptide Inhibitors
Catalog number
BAT-015662
CAS number
61214-51-5
Molecular Formula
C158H251N39O46S
Molecular Weight
3464.98
β-Endorphin, human
IUPAC Name
(2S)-2-[[2-[[(2S)-6-amino-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-6-amino-2-[[(2S,3S)-2-[[(2S,3S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S,3R)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[2-[[2-[[(2S)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]acetyl]amino]acetyl]amino]-3-phenylpropanoyl]amino]-4-methylsulfanylbutanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-4-carboxybutanoyl]amino]hexanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-3-hydroxybutanoyl]pyrrolidine-2-carbonyl]amino]-4-methylpentanoyl]amino]-3-methylbutanoyl]amino]-3-hydroxybutanoyl]amino]-4-methylpentanoyl]amino]-3-phenylpropanoyl]amino]hexanoyl]amino]-4-oxobutanoyl]amino]propanoyl]amino]-3-methylpentanoyl]amino]-3-methylpentanoyl]amino]hexanoyl]amino]-4-oxobutanoyl]amino]propanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]hexanoyl]amino]hexanoyl]amino]acetyl]amino]pentanedioic acid
Synonyms
27-L-Tyrosine-31-L-glutamic acid-beta-endorphin
Purity
97%
Density
1.302±0.06 g/cm3
Boiling Point
2931.7±65.0 °C at 760 mmHg
Sequence
YGGFMTSEKSQTPLVTLFKNAIIKNAYKKGE
Storage
Store at -20°C
Application
Neurotransmitter Agents
InChI
InChI=1S/C158H251N39O46S/c1-17-84(9)126(153(237)182-102(44-29-34-65-163)137(221)186-112(74-118(166)206)142(226)171-86(11)131(215)183-110(73-94-48-52-96(204)53-49-94)146(230)177-99(41-26-31-62-160)135(219)175-98(40-25-30-61-159)134(218)170-78-122(210)173-106(158(242)243)56-59-124(213)214)193-154(238)127(85(10)18-2)192-132(216)87(12)172-143(227)113(75-119(167)207)185-136(220)100(42-27-32-63-161)178-147(231)111(72-92-38-23-20-24-39-92)184-144(228)107(68-81(3)4)188-155(239)129(89(14)201)195-152(236)125(83(7)8)191-148(232)108(69-82(5)6)187-151(235)116-45-35-66-197(116)157(241)130(90(15)202)196-140(224)103(54-57-117(165)205)179-149(233)114(79-198)189-138(222)101(43-28-33-64-162)176-139(223)104(55-58-123(211)212)180-150(234)115(80-199)190-156(240)128(88(13)200)194-141(225)105(60-67-244-16)181-145(229)109(71-91-36-21-19-22-37-91)174-121(209)77-168-120(208)76-169-133(217)97(164)70-93-46-50-95(203)51-47-93/h19-24,36-39,46-53,81-90,97-116,125-130,198-204H,17-18,25-35,40-45,54-80,159-164H2,1-16H3,(H2,165,205)(H2,166,206)(H2,167,207)(H,168,208)(H,169,217)(H,170,218)(H,171,226)(H,172,227)(H,173,210)(H,174,209)(H,175,219)(H,176,223)(H,177,230)(H,178,231)(H,179,233)(H,180,234)(H,181,229)(H,182,237)(H,183,215)(H,184,228)(H,185,220)(H,186,221)(H,187,235)(H,188,239)(H,189,222)(H,190,240)(H,191,232)(H,192,216)(H,193,238)(H,194,225)(H,195,236)(H,196,224)(H,211,212)(H,213,214)(H,242,243)/t84-,85-,86-,87-,88+,89+,90+,97-,98-,99-,100-,101-,102-,103-,104-,105-,106-,107-,108-,109-,110-,111-,112-,113-,114-,115-,116-,125-,126-,127-,128-,129-,130-/m0/s1
InChI Key
JMHFFDIMOUKDCZ-NTXHZHDSSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(C(C)CC)C(=O)NC(CCCCN)C(=O)NC(CC(=O)N)C(=O)NC(C)C(=O)NC(CC1=CC=C(C=C1)O)C(=O)NC(CCCCN)C(=O)NC(CCCCN)C(=O)NCC(=O)NC(CCC(=O)O)C(=O)O)NC(=O)C(C)NC(=O)C(CC(=O)N)NC(=O)C(CCCCN)NC(=O)C(CC2=CC=CC=C2)NC(=O)C(CC(C)C)NC(=O)C(C(C)O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C3CCCN3C(=O)C(C(C)O)NC(=O)C(CCC(=O)N)NC(=O)C(CO)NC(=O)C(CCCCN)NC(=O)C(CCC(=O)O)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C(CCSC)NC(=O)C(CC4=CC=CC=C4)NC(=O)CNC(=O)CNC(=O)C(CC5=CC=C(C=C5)O)N
1. Effects of exercise and physical activity on depression
Y Koutedakis, A D Flouris, P C Dinas Ir J Med Sci . 2011 Jun;180(2):319-25. doi: 10.1007/s11845-010-0633-9.
Introduction:Depression is a very prevalent mental disorder affecting 340 million people globally and is projected to become the leading cause of disability and the second leading contributor to the global burden of disease by the year 2020.Aim:In this paper, we review the evidence published to date in order to determine whether exercise and physical activity can be used as therapeutic means for acute and chronic depression. Topics covered include the definition, classification criteria and treatment of depression, the link between β-endorphin and exercise, the efficacy of exercise and physical activity as treatments for depression, properties of exercise stimuli used in intervention programs, as well as the efficacy of exercise and physical activity for treating depression in diseased individuals.Conclusions:The presented evidence suggests that exercise and physical activity have beneficial effects on depression symptoms that are comparable to those of antidepressant treatments.
2. The three-dimensional structure of human β-endorphin amyloid fibrils
Joeri Verasdonck, Nadezhda Nespovitaya, Riccardo Cadalbert, Dhimam Ghosh, Julia Gath, Samir K Maji, Carolin Seuring, Peter Güntert, Roland Riek, Beat H Meier, Marielle Aulikki Wälti Nat Struct Mol Biol . 2020 Dec;27(12):1178-1184. doi: 10.1038/s41594-020-00515-z.
In the pituitary gland, hormones are stored in a functional amyloid state within acidic secretory granules before they are released into the blood. To gain a detailed understanding of the structure-function relationship of amyloids in hormone secretion, the three-dimensional (3D) structure of the amyloid fibril of the human hormone β-endorphin was determined by solid-state NMR. We find that β-endorphin fibrils are in a β-solenoid conformation with a protonated glutamate residue in their fibrillar core. During exocytosis of the hormone amyloid the pH increases from acidic in the secretory granule to neutral level in the blood, thus it is suggested-and supported with mutagenesis data-that the pH change in the cellular milieu acts through the deprotonation of glutamate 8 to release the hormone from the amyloid. For amyloid disassembly in the blood, it is proposed that the pH change acts together with a buffer composition change and hormone dilution. In the pituitary gland, peptide hormones can be stored as amyloid fibrils within acidic secretory granules before release into the blood stream. Here, we use solid-state NMR to determine the 3D structure of the amyloid fiber formed by the human hormone β-endorphin. We find that β-endorphin fibrils are in a β-solenoid conformation that is generally reminiscent of other functional amyloids. In the β-endorphin amyloid, every layer of the β-solenoid is composed of a single peptide and protonated Glu8 is located in the fibrillar core. The secretory granule has an acidic pH but, on exocytosis, the β-endorphin fibril would encounter neutral pH conditions (pH 7.4) in the blood; this pH change would result in deprotonation of Glu8 to release the hormone peptide from the amyloid. Analyses of β-endorphin variants carrying mutations in Glu8 support the role of the protonation state of this residue in fibril disassembly, among other environmental changes.
3. Regulation of human epidermal melanocyte biology by beta-endorphin
Anthony J Thody, Karin U Schallreuter, Desmond J Tobin, Christopher Gummer, Söbia Kauser J Invest Dermatol . 2003 Jun;120(6):1073-80. doi: 10.1046/j.1523-1747.2003.12242.x.
beta-Endorphin is an opioid peptide cleaved from the precursor pro-hormone pro-opiomelanocortin, from which other peptides such as adrenocorticotropic hormone, beta-lipotropic hormone, and alpha-melanocyte-stimulating hormone are also derived. alpha-Melanocyte-stimulating hormone and adrenocorticotropic hormone are well documented to regulate human skin pigmentation via action at the melanocortin-1 receptor. Whereas plasma beta-endorphin is reported to increase after exposure to ultraviolet radiation, to date a functional role for beta-endorphin in the regulation of human epidermal melanocyte biology has not been demonstrated. This study was designed to examine the involvement of the beta-endorphin/mu-opiate receptor system in human epidermal melanocytes. To address this question we employed reverse transcription-polymerase chain reaction, and immunohistochemistry/cytochemistry and immunoelectron microscopy using beta-endorphin and mu-opiate receptor specific antibodies. A functional role for beta-endorphin was assessed in epidermal melanocyte cultures by direct stimulation with the peptide. This study demonstrated the expression of mu-opiate receptor mRNA in cultured epidermal melanocytes, as well as mRNA for pro-opiomelanocortin. In addition, we have shown that beta-endorphin and mu-opiate receptor are expressed at the protein level in situ in glycoprotein100-positive melanocytes. The expression of both beta-endorphin and mu-opiate receptor correlated positively with their differentiation status in vitro. Furthermore, immunoelectron microscopy studies revealed an association of beta-endorphin with melanosomes. Functional studies showed that beta-endorphin has potent melanogenic, mitogenic, and dendritogenic effects in cultured epidermal melanocytes deprived of any exogenous supply of pro-opiomelanocortin peptides. Thus, we report that human epidermal melanocytes express a fully functioning beta-endorphin/mu-opiate receptor system. In the absence of any data showing cross-talk between the mu-opiate receptor and the melanocortin-1 receptor, we conclude that the beta-endorphin/mu-opiate receptor system participates in the regulation of skin pigmentation.
Online Inquiry
Verification code
Inquiry Basket