1. Production of enterocins L50A, L50B, and IT, a new enterocin, by Enterococcus faecium IT62, a strain isolated from Italian ryegrass in Japan
Esther Izquierdo, Audrey Bednarczyk, Christine Schaeffer, Yimin Cai, Eric Marchioni, Alain Van Dorsselaer, Saïd Ennahar Antimicrob Agents Chemother. 2008 Jun;52(6):1917-23. doi: 10.1128/AAC.01409-07. Epub 2008 Apr 7.
Enterococcus faecium IT62, isolated from ryegrass in Japan, was shown to produce three different bacteriocins, two of which had molecular masses and amino acid sequences that corresponded to those of enterocin L50A and enterocin L50B. These peptides existed, however, as chemically modified forms that were either N formylated or N formylated and oxidized at Met(24). The third bacteriocin, named enterocin IT, had a molecular mass of 6,390 Da, was made up of 54 amino acids, and did not correspond to any known bacteriocin. However, enterocin IT was identical to the C-terminal part of the 16-amino-acid-longer bacteriocin 32 (T. Inoue, H. Tomita, and Y. Ike, Antimicrob. Agents Chemother., 50:1202-1212, 2006). For the first time, the antimicrobial activity spectra for enterocins L50A and L50B were determined separately and included a wide range of gram-positive bacteria but also a few gram-negative strains that were weakly sensitive. Slight differences in the activities of enterocins L50A and L50B were observed, as gram-positive bacteria showed an overall higher level of sensitivity to L50A than to L50B, as opposed to gram-negative ones. Conversely, enterocin IT showed a very narrow antimicrobial spectrum that was limited to E. faecium strains, one strain of Bacillus subtilis, and one strain of Lactococcus lactis. This study showed that E. faecium IT62, a grass-borne strain, produces bacteriocins with very different activity features and structures that may be found in strains associated with food or those of clinical origin, which demonstrates that a particular enterocin structure may be widespread and not related to the producer's origin.
2. Simultaneous Production of Formylated and Nonformylated Enterocins L50A and L50B as well as 61A, a New Glycosylated Durancin, by Enterococcus durans 61A, a Strain Isolated from Artisanal Fermented Milk in Tunisia
Hasna Hanchi, Riadh Hammami, Benoit Fernandez, Rim Kourda, Jeannette Ben Hamida, Ismail Fliss J Agric Food Chem. 2016 May 11;64(18):3584-90. doi: 10.1021/acs.jafc.6b00700. Epub 2016 May 2.
Enterococcus durans 61A, a broad-spectrum strain, was isolated from artisanal fermented dairy products. The strain is a multibacteriocin producer, free from virulence genes, and could be considered a good candidate for application in food preservation. In the present study, E. durans 61A was shown to produce simultaneously formylated and nonformylated forms of leaderless enterocins L50A and L50B as well as 61A, a new glycosylated durancin. Bacteriocins were characterized using mass spectrometry. Formylation was found to increase enterocin antimicrobial activity of enterocin L50A (8×) and, to a lesser extent, the activity of L50B (2×). Durancin 61A was found glycosylated by two hexoses (glucose and arabinose) and exhibited broad-spectrum inhibition against Gram-positive and Gram-negative bacteria and fungal spores. Durancin 61A was highly bactericidal at 15.6 μg/mL (10× the MIC) on Listeria innocua HPB13 and seems to target bacterial membrane as shown by ion efflux and transmission electron microscopy.
3. Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q
L M Cintas, P Casaus, C Herranz, L S Hâvarstein, H Holo, P E Hernández, I F Nes J Bacteriol. 2000 Dec;182(23):6806-14. doi: 10.1128/JB.182.23.6806-6814.2000.
Enterococcus faecium L50 grown at 16 to 32 degrees C produces enterocin L50 (EntL50), consisting of EntL50A and EntL50B, two unmodified non-pediocin-like peptides synthesized without an N-terminal leader sequence or signal peptide. However, the bacteriocin activity found in the cell-free culture supernatants following growth at higher temperatures (37 to 47 degrees C) is not due to EntL50. A purification procedure including cation-exchange, hydrophobic interaction, and reverse-phase liquid chromatography has shown that the antimicrobial activity is due to two different bacteriocins. Amino acid sequences obtained by Edman degradation and DNA sequencing analyses revealed that one is identical to the sec-dependent pediocin-like enterocin P produced by E. faecium P13 (L. M. Cintas, P. Casaus, L. S. Hâvarstein, P. E. Hernández, and I. F. Nes, Appl. Environ. Microbiol. 63:4321-4330, 1997) and the other is a novel unmodified non-pediocin-like bacteriocin termed enterocin Q (EntQ), with a molecular mass of 3,980. DNA sequencing analysis of a 963-bp region of E. faecium L50 containing the enterocin P structural gene (entP) and the putative immunity protein gene (entiP) reveals a genetic organization identical to that previously found in E. faecium P13. DNA sequencing analysis of a 1,448-bp region identified two consecutive but diverging open reading frames (ORFs) of which one, termed entQ, encodes a 34-amino-acid protein whose deduced amino acid sequence was identical to that obtained for EntQ by amino acid sequencing, showing that EntQ, similarly to EntL50A and EntL50B, is synthesized without an N-terminal leader sequence or signal peptide. The second ORF, termed orf2, was located immediately upstream of and in opposite orientation to entQ and encodes a putative immunity protein composed of 221 amino acids. Bacteriocin production by E. faecium L50 showed that EntP and EntQ are produced in the temperature range from 16 to 47 degrees C and maximally detected at 47 and 37 to 47 degrees C, respectively, while EntL50A and EntL50B are maximally synthesized at 16 to 25 degrees C and are not detected at 37 degrees C or above.