Need Assistance?
  • US & Canada:
    +
  • UK: +

Epicidin 280

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Epicidin 280 is a novel type A lantibiotic produced by Staphylococcus epidermidis BN 280.

Category
Functional Peptides
Catalog number
BAT-012173
Sequence
SLGPAIKATRQVCPKATRFVTVSCKKSDCQ
1. Isolation, characterization, and heterologous expression of the novel lantibiotic epicidin 280 and analysis of its biosynthetic gene cluster
C Heidrich, U Pag, M Josten, J Metzger, R W Jack, G Bierbaum, G Jung, H G Sahl Appl Environ Microbiol. 1998 Sep;64(9):3140-6. doi: 10.1128/AEM.64.9.3140-3146.1998.
Epicidin 280 is a novel type A lantibiotic produced by Staphylococcus epidermidis BN 280. During C18 reverse-phase high-performance liquid chromatography two epicidin 280 peaks were obtained; the two compounds had molecular masses of 3,133 +/- 1.5 and 3,136 +/- 1.5 Da, comparable antibiotic activities, and identical amino acid compositions. Amino acid sequence analysis revealed that epicidin 280 exhibits 75% similarity to Pep5. The strains that produce epicidin 280 and Pep5 exhibit cross-immunity, indicating that the immunity peptides cross-function in antagonization of both lantibiotics. The complete epicidin 280 gene cluster was cloned and was found to comprise at least five open reading frames (eciI, eciA, eciP, eciB, and eciC, in that order). The proteins encoded by these open reading frames exhibit significant sequence similarity to the biosynthetic proteins of the Pep5 operon of Staphylococcus epidermidis 5. A gene for an ABC transporter, which is present in the Pep5 gene cluster but is necessary only for high yields (G. Bierbaum, M. Reis, C. Szekat, and H.-G. Sahl, Appl. Environ. Microbiol. 60:4332-4338, 1994), was not detected. Instead, upstream of the immunity gene eciI we found an open reading frame, eciO, which could code for a novel lantibiotic modification enzyme involved in reduction of an N-terminally located oxopropionyl residue. Epicidin 280 produced by the heterologous host Staphylococcus carnosus TM 300 after introduction of eciIAPBC (i.e., no eciO was present) behaved homogeneously during reverse-phase chromatography.
2. A plant endophyte Staphylococcus hominis strain MBL_AB63 produces a novel lantibiotic, homicorcin and a position one variant
M Aftab Uddin, Shammi Akter, Mahbuba Ferdous, Badrul Haidar, Al Amin, A H M Shofiul Islam Molla, Haseena Khan, Mohammad Riazul Islam Sci Rep. 2021 May 27;11(1):11211. doi: 10.1038/s41598-021-90613-9.
Here we report a jute endophyte Staphylococcus hominis strain MBL_AB63 isolated from jute seeds which showed promising antimicrobial activity against Staphylococcus aureus SG511 when screening for antimicrobial substances. The whole genome sequence of this strain, annotated using BAGEL4 and antiSMASH 5.0 to predict the gene clusters for antimicrobial substances identified a novel antimicrobial peptide cluster that belongs to the class I lantibiotic group. The predicted lantibiotic (homicorcin) was found to be 82% similar to a reported peptide epicidin 280 having a difference of seven amino acids at several positions of the core peptide. Two distinct peaks obtained at close retention times from a RP-HPLC purified fraction have comparable antimicrobial activities and LC-MS revealed the molecular mass of these peaks to be 3046.5 and 3043.2 Da. The presence of an oxidoreductase (homO) similar to that of epicidin 280- associated eciO or epilancin 15X- associated elxO in the homicorcin gene cluster is predicted to be responsible for the reduction of the first dehydrated residue dehydroalanine (Dha) to 2-hydroxypropionate that causes an increase of 3 Da mass of homicorcin 1. Trypsin digestion of the core peptide and its variant followed by ESI-MS analysis suggests the presence of three ring structures, one in the N-terminal and other two interlocking rings at the C-terminal region that remain undigested. Homicorcin exerts bactericidal activity against susceptible cells by disrupting the integrity of the cytoplasmic membrane through pore formation as observed under FE-SEM.
3. Staphylococcal antimicrobial peptides: relevant properties and potential biotechnological applications
M C F Bastos, H Ceotto, M L V Coelho, J S Nascimento Curr Pharm Biotechnol. 2009 Jan;10(1):38-61. doi: 10.2174/138920109787048580.
Bacteriocins are bacterial antimicrobial peptides with bactericidal activity against other bacteria. Staphylococcins are bacteriocins produced by staphylococci, which are Gram-positive bacteria with medical and veterinary importance. Most bacteriocins produced by staphylococci are either lantibiotics (e.g., Pep5, epidermin, epilancin K7, epicidin 280, staphylococcin C55/BacR1, and nukacin ISK-1) or class II bacteriocins (e.g., aureocins A70 and 53). Only one staphylococcin belonging to class III, lysostaphin, has been described so far. Production of staphylococcins is a self-protection mechanism that helps staphylococci to survive in their natural habitats. However, since these substances generally have a broad spectrum of activity, inhibiting several human and animal pathogens, they have potential biotechnological applications either as food preservatives or therapeutic agents. Due to the increasing consumer awareness of the risks derived not only from food-borne pathogens, but also from the artificial chemical preservatives used to control them, the interest in the discovery of natural food preservatives has increased considerably. The emergence and dissemination of antibiotic resistance among human and animal pathogens and their association with the use of antibiotics constitute a serious problem worldwide requiring effective measures for controlling their spread. Staphylococcins may be used, solely or in combination with other chemical agents, to avoid food contamination or spoilage and to prevent or treat bacterial infectious diseases. The use of combinations of antimicrobials is common in the clinical setting and expands the spectrum of organisms that can be targeted, prevents the emergence of resistant organisms, decreases toxicity by allowing lower doses of both agents and can result in synergistic inhibition.
Online Inquiry
Verification code
Inquiry Basket