Need Assistance?
  • US & Canada:
    +
  • UK: +

FK-13

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

FK-13 is a peptide by synthetic construct. It has antibacterial and anticancer activity.

Category
Functional Peptides
Catalog number
BAT-012117
Molecular Formula
C80H135N25O17
Molecular Weight
1719.1
IUPAC Name
(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S,3S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-amino-3-phenylpropanoyl]amino]hexanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]-3-methylpentanoyl]amino]-3-methylbutanoyl]amino]-5-oxopentanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]-3-methylpentanoyl]amino]hexanoyl]amino]-3-carboxypropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]-5-(diaminomethylideneamino)pentanoic acid
Synonyms
CHEMBL1275639; FK-13; H-Phe-Lys-Arg-Ile-Val-Gln-Arg-Ile-Lys-Asp-Phe-Leu-Arg-OH
Purity
>96% by HPLC
Sequence
FKRIVQRIKDFLR
InChI
InChI=1S/C80H135N25O17/c1-9-46(7)63(75(119)97-52(29-18-20-36-82)67(111)102-59(43-61(107)108)73(117)101-58(42-49-26-15-12-16-27-49)72(116)100-57(40-44(3)4)71(115)99-56(77(121)122)32-23-39-93-80(89)90)104-69(113)54(31-22-38-92-79(87)88)96-68(112)55(33-34-60(84)106)98-74(118)62(45(5)6)103-76(120)64(47(8)10-2)105-70(114)53(30-21-37-91-78(85)86)95-66(110)51(28-17-19-35-81)94-65(109)50(83)41-48-24-13-11-14-25-48/h11-16,24-27,44-47,50-59,62-64H,9-10,17-23,28-43,81-83H2,1-8H3,(H2,84,106)(H,94,109)(H,95,110)(H,96,112)(H,97,119)(H,98,118)(H,99,115)(H,100,116)(H,101,117)(H,102,111)(H,103,120)(H,104,113)(H,105,114)(H,107,108)(H,121,122)(H4,85,86,91)(H4,87,88,92)(H4,89,90,93)/t46-,47-,50-,51-,52-,53-,54-,55-,56-,57-,58-,59-,62-,63-,64-/m0/s1
InChI Key
OYTHTAUQYRDAAE-NOMCJRHGSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CCCCN)C(=O)NC(CC(=O)O)C(=O)NC(CC1=CC=CC=C1)C(=O)NC(CC(C)C)C(=O)NC(CCCN=C(N)N)C(=O)O)NC(=O)C(CCCN=C(N)N)NC(=O)C(CCC(=O)N)NC(=O)C(C(C)C)NC(=O)C(C(C)CC)NC(=O)C(CCCN=C(N)N)NC(=O)C(CCCCN)NC(=O)C(CC2=CC=CC=C2)N
1. Inhibitory Effects of Polymyxin B and Human LL-37 on the Flagellin Expression in Vibrio vulnificus
Shin-Ichi Miyoshi, Mika Kumagai, Ryousuke Tanida, Kohei Soda, Yuri Yoshimoto, Tamaki Mizuno Biocontrol Sci. 2022;27(2):57-64. doi: 10.4265/bio.27.57.
Vibrio vulnificus, an opportunistic human pathogen responsible for primary septicemia, initiates pathogenesis by attachment to the intestinal epithelial cells for which the motility by the polar flagellum plays an essential role. The proteomic analysis of outer membrane proteins showed that the treatment with the 1/2 minimum inhibitory concentration (MIC) of polymyxin B (a bacterial antimicrobial peptide) led to the reduced production of flagellin (a major component of the polar flagellum). Furthermore, the bacterial motility was inhibited in the presence of 1/2 MIC of polymyxin B. V. vulnificus has six flagellin genes organized into the flaFBA and flaCDE loci. The flaA was found to be expressed higher than flaC, and its expression was significantly decreased by polymyxin B. As well as polymyxin B, the 1/2 MIC of LL-37 (a human intestinal antimicrobial peptide) reduced the expression of flaA. In addition, among four fragments of LL-37, KI-18 and FK-13 containing F17KRIVQRIKDELR29 could lead to the decreased expression of flaA. Because the motility closely relates to virulence of V. vulnificus, the findings obtained herein indicate that LL-37 may reduce the bacterial virulence through inhibition of the motility via the polar flagellum.
2. LL-37-derived membrane-active FK-13 analogs possessing cell selectivity, anti-biofilm activity and synergy with chloramphenicol and anti-inflammatory activity
Ganesan Rajasekaran, Eun Young Kim, Song Yub Shin Biochim Biophys Acta Biomembr. 2017 May;1859(5):722-733. doi: 10.1016/j.bbamem.2017.01.037. Epub 2017 Feb 1.
Although the human-derived antimicrobial peptide (AMP) LL-37 has potent antimicrobial and anti-inflammatory activities, its therapeutic application is limited by its low cell selectivity and high production cost due to its large size. To overcome these problems, we tried to develop novel LL-37-derived short α-helical AMPs with improved cell selectivity and without a significant loss of anti-inflammatory activity relative to that of parental LL-37. Using amino acid substitution, we designed and synthesized a series of FK13 analogs based on the sequence of the 13-meric short FK13 peptide (residues 17-29 of LL-37) that has been identified as the region responsible for the antimicrobial activity of LL-37. Among the designed FK13 analogs, FK-13-a1 and FK-13-a7 showed high cell selectivity and retained the anti-inflammatory activity. The therapeutic index (a measure of cell selectivity) of FK-13-a1 and FK-13-a7 was 6.3- and 2.3-fold that of parental LL-37, respectively. Furthermore, FK-13-a1 and FK-13-a7 displayed more potent antimicrobial activity against antibiotic-resistant bacteria including MRSA, MDRPA, and VREF, than did LL-37. In addition, FK-13-a1 and FK-13-a7 exhibited greater synergistic effects with chloramphenicol against MRSA and MDRPA and were more effective anti-biofilm agents against MDRPA than LL-37 was. Moreover, FK-13-a1 and FK-13-a7 maintained their activities in the presence of physiological salts and human serum. SYTOX green uptake, membrane depolarization and killing kinetics revealed that FK13-a1 and FK13-a7 kills microbial cells by permeabilizing the cell membrane and damaging membrane integrity. Taken together, our results suggest that FK13-a1 and FK13-a7 can be developed as novel antimicrobial/anti-inflammatory agents.
3. The antimicrobial peptides LL-37, KR-20, FK-13 and KR-12 inhibit the growth of a sensitive and a metronidazole-resistant strain of Trichomonas vaginalis
María G Ramírez-Ledesma, Mayra C Rodríguez, Nayeli Alva-Murillo, Eva E Avila Parasitol Res. 2022 Dec;121(12):3503-3512. doi: 10.1007/s00436-022-07674-6. Epub 2022 Sep 29.
The parasite Trichomonas vaginalis is the aetiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease worldwide. This infection often remains asymptomatic and is related to several health complications. The traditional treatment for trichomoniasis uses drugs of the 5-nitroimidazole family, such as metronidazole; however, scientific reports indicate an increasing number of drug-resistant strains. Antimicrobial peptides could be an alternative or complementary treatment. In this sense, one attractive candidate is the human cathelicidin, being LL-37 its active form. LL-37 possesses microbicidal activity against many microorganisms such as bacteria, Candida albicans, and Entamoeba histolytica. Shorter sequences derived from this peptide, such as KR-20, FK-13 and KR-12, have been shown to possess a higher microbicidal effect than LL-37. In this study, we determined the activity of LL-37 and its derivatives against T. vaginalis, which was unknown. The results showed that the four peptides (LL-37, KR-20, FK-13-NH2 and KR-12) decreased the viability of T. vaginalis on a 5-nitroimidazole-sensitive and a 5-nitroimidazole-resistant strain; however, KR-20 was the most effective peptide, followed by FK-13-NH2. Low concentrations of all peptides showed a better effect when combined with metronidazole in the sensitive and resistant T. vaginalis strains. These results are promising for potential future therapeutic uses.
Online Inquiry
Verification code
Inquiry Basket