Fmoc-(3S)-1,2,3,4-tetrahydroisoquinoline-7-hydroxy-3-carboxylic acid
Need Assistance?
  • US & Canada:
    +
  • UK: +

Fmoc-(3S)-1,2,3,4-tetrahydroisoquinoline-7-hydroxy-3-carboxylic acid

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Fmoc-Amino Acids
Catalog number
BAT-007271
CAS number
178432-49-0
Molecular Formula
C25H21NO5
Molecular Weight
415.43
Fmoc-(3S)-1,2,3,4-tetrahydroisoquinoline-7-hydroxy-3-carboxylic acid
IUPAC Name
(3S)-2-(9H-fluoren-9-ylmethoxycarbonyl)-7-hydroxy-3,4-dihydro-1H-isoquinoline-3-carboxylic acid
Synonyms
Fmoc-Tic(OH)-OH
Appearance
White to off-white solid
Purity
≥ 98% (HPLC)
Melting Point
185-190 °C
Storage
Store at 2-8 °C
InChI
InChI=1S/C25H21NO5/c27-17-10-9-15-12-23(24(28)29)26(13-16(15)11-17)25(30)31-14-22-20-7-3-1-5-18(20)19-6-2-4-8-21(19)22/h1-11,22-23,27H,12-14H2,(H,28,29)/t23-/m0/s1
InChI Key
ZBLZSUJEVZOPJV-QHCPKHFHSA-N
Canonical SMILES
C1C(N(CC2=C1C=CC(=C2)O)C(=O)OCC3C4=CC=CC=C4C5=CC=CC=C35)C(=O)O
1. 3-Aminopyrrolidine-4-carboxylic acid as versatile handle for internal labeling of pyrrolidinyl PNA
Nisanath Reenabthue, Chalothorn Boonlua, Chotima Vilaivan, Tirayut Vilaivan, Chaturong Suparpprom Bioorg Med Chem Lett. 2011 Nov 1;21(21):6465-9. doi: 10.1016/j.bmcl.2011.08.079. Epub 2011 Aug 23.
Conformationally restricted pyrrolidinyl PNAs with an α/β-dipeptide backbone consisting of a nucleobase-modified proline and a cyclic five-membered amino acid spacer such as (1S,2S)-2-aminocyclopentanecarboxylic acid (ACPC) (acpcPNA) can form very stable hybrids with DNA with high Watson-Crick base pairing specificity. This work aims to explore the effect of incorporating 3-aminopyrrolidine-4-carboxylic acid (APC), which is isosteric to the ACPC spacer, into the acpcPNA. It is expected that the modification should not negatively affect the DNA binding properties, and that the additional nitrogen atom in the APC should provide a handle for internal modification. Orthogonally-protected (N(3)-Fmoc/N(1)-Boc and N(3)-Fmoc/N(1)-Tfa) APC monomers have been successfully synthesized and incorporated into the acpcPNA by Fmoc-solid-phase peptide synthesis. T(m), UV and CD spectroscopy confirmed that the (3R,4S)-APC could substitute the (1S,2S)-ACPC spacer in the acpcPNA with only slightly decreasing the stability of the hybrids formed between the modified acpc/apcPNA and DNA. In contrast, the (3S,4R) enantiomer of APC caused substantial destabilization of the hybrids. Furthermore, a successful on-solid-support internal labeling of the acpc/apcPNA via amide bond formation between pyrene-1-carboxylic acid or 4-(pyrene-1-yl) butyric acid and the pyrrolidine nitrogen atom of the APC spacer has been demonstrated. Fluorescence properties of the pyrene-labeled acpc/apcPNAs are sensitive to their hybridization states and can readily distinguish between complementary and single-mismatched DNA targets.
2. Functionalised 2,3-dimethyl-3-aminotetrahydrofuran-4-one and N-(3-oxo-hexahydrocyclopenta[b]furan-3a-yl)acylamide based scaffolds: synthesis and cysteinyl proteinase inhibition
John Watts, Alex Benn, Nick Flinn, Tracy Monk, Manoj Ramjee, Peter Ray, Yikang Wang, Martin Quibell Bioorg Med Chem. 2004 Jun 1;12(11):2903-25. doi: 10.1016/j.bmc.2004.03.042.
A stereoselective synthesis of functionalised (2R,3R)-2,3-dimethyl-3-amidotetrahydrofuran-4-one, its (2S,3R)-epimer and (3aR,6aR)-N-(3-oxo-hexahydrocyclopenta[b]furan-3a-yl)acylamide cysteinyl proteinase inhibitors has been developed using Fmoc-protected scaffolds 6-8 in a solid-phase combinatorial strategy. Within these scaffolds, the introduction of an alkyl substituent alpha to the ketone affords chiral stability to an otherwise configurationally labile molecule. Preparation of scaffolds 6-8 required stereoselective syntheses of suitably protected alpha-diazomethylketone intermediates 9-11, derived from appropriately protected alpha-methylthreonines (2R,3R)-12, (2R,3S)-13 and a protected analogue of (1R,2R)-1-amino-2-hydroxycyclopentanecarboxylic acid 14. Application of standard methods for the preparation of amino acid alpha-diazomethylketones, through treatment of the mixed anhydride or pre-formed acyl fluorides of intermediates 12-14 with diazomethane, proved troublesome giving complex mixtures. However, the desired alpha-diazomethylketones were isolated and following a lithium chloride/acetic acid promoted insertion reaction provided scaffolds 6-8. Elaboration of 6-8 on the solid phase gave alpha,beta-dimethyl monocyclic ketone based inhibitors 38a-f, 39a,b,d,e,f and bicyclic inhibitors 40a-e that exhibited low micromolar activity against a variety of cysteinyl proteinases.
3. Amino acid-azetidine chimeras: synthesis of enantiopure 3-substituted azetidine-2-carboxylic acids
Z Sajjadi, W D Lubell J Pept Res. 2005 Feb;65(2):298-310. doi: 10.1111/j.1399-3011.2005.00228.x.
Azetidine-2-carboxylic acid (Aze) analogs possessing various heteroatomic side chains at the 3-position have been synthesized by modification of 1-9-(9-phenylfluorenyl) (PhF)-3-allyl-Aze tert-butyl ester (2S,3S)-1. 3-Allyl-Aze 1 was synthesized by regioselective allylation of alpha-tert-butyl beta-methyl N-(PhF)aspartate 13, followed by selective omega-carboxylate reduction, tosylation, and intramolecular N-alkylation. Removal of the PhF group and olefin reduction by hydrogenation followed by Fmoc protection produced nor-leucine-Aze chimera 2. Regioselective olefin hydroboration of (2S,3S)-1 produced primary alcohol 23, which was protected as a silyl ether, hydrogenated and N-protected to give 1-Fmoc-3-hydroxypropyl-Aze 26. Enantiopure (2S,3S)-3-(3-azidopropyl)-1-Fmoc-azetidine-2-carboxylic acid tert-butyl ester 3 was prepared as a Lys-Aze chimera by activation of 3-hydroxypropyl-Aze 26 as a methanesulfonate and displacement with sodium azide. Moreover, orthogonally protected azetidine dicarboxylic acid 4 was synthesized as an alpha-aminoadipate-Aze chimera by oxidation of alcohol 26. These orthogonally protected amino acid-Aze chimeras are designed to serve as tools for studying the influence of conformation on peptide activity.
Online Inquiry
Verification code
Inquiry Basket