Nα,Nα-Bis-Fmoc-L-cystine bis(tert-butyl ester)
Need Assistance?
  • US & Canada:
    +
  • UK: +

Nα,Nα-Bis-Fmoc-L-cystine bis(tert-butyl ester)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Fmoc-Amino Acids
Catalog number
BAT-007723
CAS number
139592-37-3
Molecular Formula
C44H48N2O8S2
Molecular Weight
796.99
Nα,Nα-Bis-Fmoc-L-cystine bis(tert-butyl ester)
Size Price Stock Quantity
10 g $299 In stock
100 g $629 In stock
IUPAC Name
tert-butyl (2R)-2-(9H-fluoren-9-ylmethoxycarbonylamino)-3-[[(2R)-2-(9H-fluoren-9-ylmethoxycarbonylamino)-3-[(2-methylpropan-2-yl)oxy]-3-oxopropyl]disulfanyl]propanoate
Synonyms
(Fmoc-L-Cys-OtBu)2; (2R)-tert-Butyl 2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-(((2R)-3-(tert-butoxy)-2-((((1,2,3,3a,8,8a-hexahydrocyclopenta[a]inden-8-yl)methoxy)carbonyl)amino)-3-oxopropyl)disulfanyl)propanoate; tert-butyl (2R)-2-(9H-fluoren-9-ylmethoxycarbonylamino)-3-[[(2R)-2-(9H-fluoren-9-ylmethoxycarbonylamino)-3-[(2-methylpropan-2-yl)oxy]-3-oxopropyl]disulfanyl]propanoate; (Fmoc-Cys-OtBu)2; (Fmoc-cys-otbu)2 (disulfide bond); L-Cystine, N,N'-bis[(9H-fluoren-9-ylmethoxy)carbonyl]-, 1,1'-bis(1,1-dimethylethyl) ester; N,N'-Bis(9H-fluorene-9-ylmethoxycarbonyl)-L-cystine ditert-butyl ester
Appearance
White to off-white powder
Purity
≥ 98% (HPLC)
Storage
Store at 2-8 °C
InChI
InChI=1S/C44H48N2O8S2/c1-43(2,3)53-39(47)37(45-41(49)51-23-35-31-19-11-7-15-27(31)28-16-8-12-20-32(28)35)25-55-56-26-38(40(48)54-44(4,5)6)46-42(50)52-24-36-33-21-13-9-17-29(33)30-18-10-14-22-34(30)36/h7-22,35-38H,23-26H2,1-6H3,(H,45,49)(H,46,50)/t37-,38-/m0/s1
InChI Key
IQCNHOFZFYLKLF-UWXQCODUSA-N
Canonical SMILES
CC(C)(C)OC(=O)C(CSSCC(C(=O)OC(C)(C)C)NC(=O)OCC1C2=CC=CC=C2C3=CC=CC=C13)NC(=O)OCC4C5=CC=CC=C5C6=CC=CC=C46

Nα,Nα-Bis-Fmoc-L-cystine bis(tert-butyl ester), a pivotal reagent in peptide synthesis and diverse biochemical applications, finds its utility in various realms. Here are four key applications of this compound:

Peptide Synthesis: Playing a crucial role in solid-phase peptide synthesis, Nα,Nα-Bis-Fmoc-L-cystine bis(tert-butyl ester) is instrumental in incorporating cysteine residues into peptides. The Fmoc protection strategy allows for precise deprotection and coupling reactions, ensuring the seamless production of peptides for a myriad of research and therapeutic endeavors. This methodological approach guarantees the efficient synthesis of peptides without compromising other functional groups, underscoring its importance in peptide chemistry.

Proteomics Research: Within the domain of proteomics, this compound serves a pivotal role in introducing disulfide bridges in synthetic peptides, essential for maintaining the structural integrity and functionality of peptides. Disulfide bridges play a critical role in stabilizing and modulating the activity of proteins, offering profound insights into protein folding, structural intricacies, and molecular interactions. This application aids in unraveling the functional attributes of proteins and peptides, enriching our understanding of protein dynamics and behavior.

Drug Development: In the arena of drug discovery and development, Nα,Nα-Bis-Fmoc-L-cystine bis(tert-butyl ester) emerges as a valuable tool for synthesizing bioactive peptides with therapeutic potential. The ability to introduce cysteine residues and disulfide bridges is fundamental in designing peptides tailored to target specific molecular interactions. These peptides serve as pivotal leads in the quest for novel drugs with enhanced stability and efficacy. This methodology provides a robust framework for exploring peptide-based therapeutics and accelerating drug development processes.

Bioconjugation: Beyond peptide synthesis, this compound finds utility in bioconjugation techniques, facilitating the linkage of peptides to various biomolecules such as polymers, nanoparticles, or antibodies. Cysteine residues present in the compound enable site-specific attachment and cross-linking, enabling the creation of versatile bioconjugates with multifunctional capabilities. These bioconjugates find applications in targeted drug delivery, diagnostics, and biomedical imaging, underscoring the diverse applications of Nα,Nα-Bis-Fmoc-L-cystine bis(tert-butyl ester) in contemporary bioconjugation methodologies.

Online Inquiry
Verification code
Inquiry Basket