Fmoc-Cys(Trt)-2-Chlorotrityl Resin
Need Assistance?
  • US & Canada:
    +
  • UK: +

Fmoc-Cys(Trt)-2-Chlorotrityl Resin

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

2-Chlorotrityl-Chloride-Resin is less acid-labile than Trityl Resin, and is widely used for solid phase immobilization. It has been used with the Fmoc/tBu methodology in the microwave-assisted solid phase peptide synthesis.

Category
Amino acids attached to 2-Chlorotrityl-Chloride-Resin
Catalog number
BAT-000487
DVB Crosslinking
1% DVB
Substitution
1.0-1.4 meq/g
Storage
Store at 2-8 °C
1. Fmoc-Sec(Xan)-OH: synthesis and utility of Fmoc selenocysteine SPPS derivatives with acid-labile sidechain protection
Stevenson Flemer Jr J Pept Sci. 2015 Jan;21(1):53-9. doi: 10.1002/psc.2723. Epub 2014 Dec 11.
We report here the synthesis of the first selenocysteine SPPS derivatives which bear TFA-labile sidechain protecting groups. New compounds Fmoc-Sec(Xan)-OH and Fmoc-Sec(Trt)-OH are presented as useful and practical alternatives to the traditional Fmoc-Sec-OH derivatives currently available to the peptide chemist. From a bis Fmoc-protected selenocystine precursor, multiple avenues of diselenide reduction were attempted to determine the most effective method for subsequent attachment of the protecting group electrophiles. Our previously reported one-pot reduction methodology was ultimately chosen as the optimal approach toward the synthesis of these novel building blocks, and both were easily obtained in high yield and purity. Fmoc-Sec(Xan)-OH was discovered to be bench-stable for extended timeframes while the corresponding Fmoc-Sec(Trt)-OH derivative appeared to detritylate slowly when not stored at -20 °C. Both Sec derivatives were incorporated into single- and multiple-Sec-containing test peptides in order to ascertain the peptides' deprotection behavior and final form upon TFA cleavage. Single-Sec-containing test peptides were always isolated as their corresponding diselenide dimers, while dual-Sec-containing peptide sequences were afforded exclusively as their intramolecular diselenides.
2. Application of 2-chlorotrityl resin in solid phase synthesis of (Leu15)-gastrin I and unsulfated cholecystokinin octapeptide. Selective O-deprotection of tyrosine
K Barlos, D Gatos, S Kapolos, C Poulos, W Schäfer, W Q Yao Int J Pept Protein Res. 1991 Dec;38(6):555-61. doi: 10.1111/j.1399-3011.1991.tb01539.x.
The carboxyl terminal dipeptide amide, Fmoc-Asp-Phe-NH2, of gastrin and cholecystokinin (CCK) has been attached in high yield through its free side chain carboxyl group to the acid labile 2-chlorotrityl resin. The obtained peptide resin ester has been applied in the solid phase synthesis of partially protected (Leu15)-gastrin I utilising Fmoc-amino acids. Quantitative cleavage of this peptide from resin, with the t-butyl type side chain protection intact is achieved using mixtures of acetic acid/trifluoroethanol/dichloromethane. Under the same conditions complete detritylation of the tyrosine phenoxy function occurs simultaneously. Thus, the solid-phase synthesis of peptides selectively deprotected at the side chain of tyrosine is rendered possible by the use of 2-chlorotrityl resin and Fmoc-Tyr(Trt)-OH. The efficiency of this approach has been proved by the subsequent high-yield synthesis of three model peptides and the CCK-octapeptide.
3. The investigation of Fmoc-cysteine derivatives in solid phase peptide synthesis
S N McCurdy Pept Res. 1989 Jan-Feb;2(1):147-52.
Fmoc-Cys(t-Bu)-OH, Fmoc-Cys(Acm)-OH, and Fmoc-Cys(Trt)-OH exhibit excellent synthesis characteristics when used in Fmoc solid phase peptide synthesis on the Applied Biosystems Model 431A peptide synthesizer. The actual 5% scavenger mixture will vary according to the particular amino acid residues present. As was previously mentioned, an anisole/ethanedithiol/ethylmethylsulfide mixture (3:1:1) works well as a general scavenger solution for TFA cleavage of Fmoc synthesized peptide resins. It also may be possible to use lower acid (TFA) concentrations. The syntheses and workups of the peptide Somatostatin utilizing these derivatives demonstrate the ease of using these cysteine derivatives with the Fmoc chemistry approach. The use of either the t-Bu or the Acm moiety produces a peptide containing protected thiol groups after cleavage with 95% TFA. The Fmoc-Cys(Trt)-OH derivative is efficiently deprotected using 95% TFA. This investigation should provide further insight into synthesis options and cleavage protocols when working with cysteine-containing peptides.
Online Inquiry
Verification code
Inquiry Basket