Fmoc-D-Allo-Thr(tBu)-OL
Need Assistance?
  • US & Canada:
    +
  • UK: +

Fmoc-D-Allo-Thr(tBu)-OL

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Fmoc-Amino Acids
Catalog number
BAT-001915
Molecular Formula
C23H29NO4
Molecular Weight
383.5
1. Sterically directed nitronate complexes of 2,6-di-tert-butyl-4-nitrophenoxide with Cu(ii) and Zn(ii) and their H-atom transfer reactivity
Thomas R Porter, Ellen C Hayes, Werner Kaminsky, James M Mayer Dalton Trans. 2017 Feb 21;46(8):2551-2558. doi: 10.1039/c6dt04427a.
The bulky 2,6-di-tert-butyl-4-nitrophenolate ligand forms complexes with [TptBuCuII]+ and [TptBuZnII]+ binding via the nitro group in an unusual nitronato-quinone resonance form (TptBu = hydro-tris(3-tert-butyl-pyrazol-1-yl)borate). The Cu complex in the solid state has a five-coordinate κ2-nitronate structure, while the Zn analogue has a four-coordinate κ1-nitronate ligand. 4-Nitrophenol, without the 2,6-di-tert-butyl substituents, instead binds to [TptBuCuII]+ through the phenolate oxygen. This difference in binding is very likely due to the steric difficulty in binding a 2,6-di-tert-butyl-phenolate ligand to the [TptBuMII]+ unit. TptBuCuII(κ2-O2NtBu2C6H2O) reacts with the hydroxylamine TEMPO-H (2,2,6,6-tetramethylpiperidin-1-ol) by abstracting a hydrogen atom. This system thus shows an unusual sterically enforced transition metal-ligand binding motif and a copper-phenolate interaction that differs from what is typically observed in biological and chemical catalysis.
2. Synthesis and structure of a new bulky bis-(alkoxide) ligand on a terphenyl platform
Sudheer S Kurup, Sandra Nasser, Cassandra L Ward, Stanislav Groysman Acta Crystallogr E Crystallogr Commun. 2022 Jan 1;78(Pt 1):92-96. doi: 10.1107/S2056989021013438.
A new sterically bulky chelating bis-(alkoxide) ligand 3,3'-([1,1':4',1''-terphen-yl]-2,2''-di-yl)bis-(2,2,4,4-tetra-methyl-pentan-3-ol), (H2[OO]tBu), was prepared in a two-step process as the di-chloro-methane monosolvate, C36H50O2·CH2Cl2. The first step is a Suzuki-Miyaura coupling reaction between 2-bromo-phenyl-boronic acid and 1,4-di-iodo-benzene. The resulting 2,2''-di-bromo-1,1':4',1''-terphenyl was reacted with t BuLi and hexa-methyl-acetone to obtain the desired product. The crystal structure of H2[OO]tBu revealed an anti conformation of the [CPh2(OH)] fragments relative to the central phenyl. Furthermore, the hydroxyl groups point away from each other. Likely because of this anti-anti conformation, the attempts to synthesize first-row transition-metal complexes with H2[OO]tBu were not successful.
3. Conventional and high-yield synthesis of DTPA-conjugated peptides: application of a monoreactive DTPA to DTPA-D-Phe1-octreotide synthesis
Y Arano, H Akizawa, T Uezono, K Akaji, M Ono, S Funakoshi, M Koizumi, A Yokoyama, Y Kiso, H Saji Bioconjug Chem. 1997 May-Jun;8(3):442-6. doi: 10.1021/bc970023b.
Successful imaging of somatostatin receptor-positive tumors with 111In-DTPA-D-Phe1-octreotide has stimulated development of peptide radiopharmaceuticals using DTPA as the chelating agent. However, use of cyclic DTPA dianhydride (cDTPA) resulted in low synthetic yields of DTPA-peptide by either solution or solid-phase syntheses. This paper reports a novel high-yield synthetic procedure for DTPA-D-Phe1-octreotide that is applicable to other peptides of interest using a monoreactive DTPA derivative. A monoreactive DTPA that possesses one free terminal carboxylic acid along with four carboxylates protected with tert-butyl ester (mDTPA) was synthesized. Fmoc-Thr(tBu)-ol, prepared from Fmoc-Thr(tBu)-OH, was loaded onto 2-chlorotrityl chloride resin. After construction of the peptide chains by Fmoc chemistry, mDTPA was coupled to the alpha amine group of the peptide on the resin in the presence of 1,3-diisopropylcarbodiimide and 1-hydroxybenzotriazole. Treatment of the mDTPA-peptide-resin with trifluoroacetic acid-thioanisole removed the protecting groups and liberated [Cys(Acm)2,7]-octreotide-D-Phe1-DTPA from the resin. Iodine oxidation of the DTPA-peptide, followed by the reversed-phase HPLC purification, produced DTPA-D-Phe1-octreotide in overall 31.8% yield based on the starting Fmoc-Thr(tBu)-ol-resin. The final product gave a single peak on analytical HPLC, and amino acid analysis and mass spectrometry confirmed the integrity of the product. 111In radiolabeling of the product provided 111In-DTPA-D-Phe1-octreotide with > 95% radiochemical yield, as confirmed by analytical reversed-phase HPLC, TLC, and CAE. These finding indicated that use of mDTPA during solid-phase peptide synthesis greatly increased the synthetic yield of DTPA-D-Phe1-octreotide, due to the absence of nonselective reactions that are unavoidable when cDTPA is used. These results also suggested that mDTPA would be a versatile reagent to introduce DTPA with high yield into peptides of interest.
Online Inquiry
Verification code
Inquiry Basket