1. Asparagine coupling in Fmoc solid phase peptide synthesis
H Gausepohl, M Kraft, R W Frank Int J Pept Protein Res. 1989 Oct;34(4):287-94. doi: 10.1111/j.1399-3011.1989.tb01576.x.
To investigate side reactions during the activation of side chain unprotected asparagine in Fmoc-solid phase peptide synthesis the peptide Met-Lys-Asn-Val-Pro-Glu-Pro-Ser was synthesized using different coupling conditions for introduction of the asparagine residue. Asparagine was activated by DCC/HOBt, BOP (Castro's reagent) or introduced as the pentafluorophenyl ester. The resulting peptide products were analyzed by HPLC, mass spectrometry and Edman degradation. In the crude products varying amounts of beta-cyano alanine were found, which had been formed by dehydration of the side chain amide during carboxyl activation of Fmoc-asparagine. A homogeneous peptide was obtained by using either side chain protected asparagine derivatives with BOP mediated activation or by coupling of Fmoc-Asn-OPfp. Fmoc-Asn(Mbh)-OH and Fmoc-Asn(Tmob)-OH were coupled rapidly and without side reactions with BOP. For the side chain protected derivatives the coupling was as fast as that of other Fmoc-amino acid derivatives, whereas couplings of Fmoc-Asn-OH proceed more slowly. However, during acidolytic cleavage both protection groups, Mbh and Tmob, generate carbonium ions which readily alkylate tryptophan residues in a peptide. Tryptophan modification was examined using the model peptide Asn-Trp-Asn-Val-Pro-Glu-Pro-Ser. Alkylation could be reduced by addition of scavengers to the TFA during cleavage and side chain deprotection. A homogeneous peptide containing both, asparagine and tryptophan, was obtained only by coupling of Fmoc-Asn-OPfp.
2. Solid-phase synthesis and applications of N-(S-acetylmercaptoacetyl) peptides
J W Drijfhout, W Bloemhoff, J T Poolman, P Hoogerhout Anal Biochem. 1990 Jun;187(2):349-54. doi: 10.1016/0003-2697(90)90468-o.
The reagent pentafluorophenyl S-acetylmercaptoacetate was used to modify the N-terminus of resin-bound side-chain-protected peptides. The modification was carried out in an automated cycle in the final stage of fluorenylmethoxycarbonyl (Fmoc)/polyamide-mediated solid-phase synthesis. Side-chain deprotection and cleavage from the resin with aqueous trifluoroacetic acid gave the N-(S-acetylmercaptoacetyl) peptides. The S-acetylmercaptoacetyl peptides were transformed into reactive thiol-containing peptides by incubation with hydroxylamine at neutral pH. The S-deacetylation was performed in the presence of a sulfhydryl-reactive compound (or intramolecular group) to enable immediate capture of the sensitive thiol. Three applications were investigated. An S-acetylmercaptoacetyl peptide, containing a sequence of a meningococcal membrane protein, was incubated with hydroxylamine in the presence of 5-(iodoacetamido)fluorescein to give the corresponding fluorescein-labeled peptide in 62% yield. The same peptide was also S-deacetylated in the presence of bromoacetylated poly-L-lysine to afford a peptide/polylysine conjugate. Finally, a peptide corresponding to a sequence of herpes simplex virus glycoprotein D was prepared. This peptide, containing an N-terminal-S-acetylmercaptoacetyl group and an additional C-terminal S-(3-nitro-2-pyridinesulfenyl)cysteine residue, was converted into a cyclic disulfide peptide (20%).
3. Solid-Phase Total Synthesis of Bacitracin A
Jinho Lee, John H. Griffin, Thalia I. Nicas J Org Chem. 1996 Jun 14;61(12):3983-3986. doi: 10.1021/jo960580b.
An efficient solid-phase method for the total synthesis of bacitracin A is reported. This work was undertaken in order to provide a general means of probing the intriguing mode of action of the bacitracins and exploring their potential for use against emerging drug-resistant pathogens. The synthetic approach to bacitracin A involves three key features: (1) linkage to the solid support through the side chain of the L-asparaginyl residue at position 12 (L-Asn(12)), (2) cyclization through amide bond formation between the alpha-carboxyl of L-Asn(12) and the side chain amino group of L-Lys(8), and (3) postcyclization addition of the N-terminal thiazoline dipeptide as a single unit. To initiate the synthesis, Fmoc L-Asp(OH)-OAllyl was attached to a PAL resin. The chain of bacitracin A was elaborated in the C-to-N direction by sequential piperidine deprotection/HBTU-mediated coupling cycles with Fmoc D-Asp(OtBu)-OH, Fmoc L-His(Trt)-OH, Fmoc D-Phe-OH, Fmoc L-Ile-OH, Fmoc D-Orn(Boc)-OH, Fmoc L-Lys(Aloc)-OH, Fmoc L-Ile-OH, Fmoc D-Glu(OtBu)-OH, and Fmoc L-Leu-OH. The allyl ester and allyl carbamate protecting groups of L-Asn(12) and L-Lys(8), respectively, were simultaneously and selectively removed by treating the peptide-resin with palladium tetrakis(triphenylphosphine), acetic acid, and triethylamine. Cyclization was effected by PyBOP/HOBT under the pseudo high-dilution conditions afforded by attachment to the solid support. After removal of the N-terminal Fmoc group, the cyclized peptide was coupled with 2-[1'(S)-(tert-butyloxycarbonylamino)-2'(R)-methylbutyl]-4(R)-carboxy-Delta(2)-thiazoline (1). The synthetic peptide was deprotected and cleaved from the solid support under acidic conditions and then purified by reverse-phase HPLC. The synthetic material exhibited an ion in the FAB-MS at m/z 1422.7, consistent with the molecular weight calculated for the parent ion of bacitracin A (MH(+) = C(73)H(84)N(10)O(23)Cl(2), 1422.7 g/mol). It was also indistinguishable from authentic bacitracin A by high-field (1)H NMR and displayed antibacterial activity equal to that of the natural product, thus confirming its identity as bacitracin A. The overall yield for the solid-phase synthesis was 24%.