1. Solid-Phase Insertion of N-mercaptoalkylglycine Residues into Peptides
Spyridon Mourtas, Dimitrios Gatos, Kleomenis Barlos Molecules. 2019 Nov 22;24(23):4261. doi: 10.3390/molecules24234261.
N-mercaptoalkylglycine residues were inserted into peptides by reacting N-free amino groups of peptides, which were initially synthesized on 2-chlorotrityl resin (Cltr) using the Fmoc/tBu method, with bromoacetic acid and subsequent nucleophilic replacement of the bromide by reacting with S-4-methoxytrityl- (Mmt)/S-trityl- (Trt) protected aminothiols. The synthesized thiols containing peptide-peptoid hybrids were cleaved from the resin, either protected by treatment with dichloromethane (DCM)/trifluoroethanol (TFE)/acetic acid (AcOH) (7:2:1), or deprotected (fully or partially) by treatment with trifluoroacetic acid (TFA) solution using triethylsilane (TES) as a scavenger.
2. Convergent Synthesis of Thioether Containing Peptides
Spyridon Mourtas, Christina Katakalou, Dimitrios Gatos, Kleomenis Barlos Molecules. 2020 Jan 5;25(1):218. doi: 10.3390/molecules25010218.
Thioether containing peptides were obtained following three synthetic routes. In route A, halo acids esterified on 2-chlorotrityl(Cltr) resin were reacted with N-fluorenylmethoxycarbonyl (Fmoc) aminothiols. These were either cleaved from the resin to the corresponding (Fmoc-aminothiol)carboxylic acids, which were used as key building blocks in solid phase peptide synthesis (SPPS), or the N-Fmoc group was deprotected and peptide chains were elongated by standard SPPS. The obtained N-Fmoc protected thioether containing peptides were then condensed either in solution, or on solid support, with the appropriate amino components of peptides. In route B, the thioether containing peptides were obtained by the reaction of N-Fmoc aminothiols with bromoacetylated peptides, which were synthesized on Cltr-resin, followed by removal of the N-Fmoc group and subsequent peptide elongation by standard SPPS. In route C, the thioether containing peptides were obtained by the condensation of a haloacylated peptide synthesized on Cltr-resin and a thiol-peptide synthesized either on 4-methoxytrityl(Mmt) or trityl(Trt) resin.
3. A Shelf Stable Fmoc Hydrazine Resin for the Synthesis of Peptide Hydrazides
Michael J Bird, Philip E Dawson Pept Sci (Hoboken). 2022 Sep;114(5):e24268. doi: 10.1002/pep2.24268. Epub 2022 Apr 16.
C-terminal hydrazides are an important class of synthetic peptides with an ever expanding scope of applications, but their widespread application for chemical protein synthesis has been hampered due to the lack of stable resin linkers for synthesis of longer and more challenging peptide hydrazide fragments. We present a practical method for the regeneration, loading, and storage of trityl-chloride resins for the production of hydrazide containing peptides, leveraging 9-fluorenylmethyl carbazate. We show that these resins are extremely stable under several common resin storage conditions. The application of these resins to solid phase peptide synthesis (SPPS) is demonstrated through the synthesis of the 40-mer GLP-1R agonist peptide "P5". These studies support the broad utility of Fmoc-NHNH-Trt resins for SPPS of C-terminal hydrazide peptides.