Fmoc-D-N-Me-Phg-OH
Need Assistance?
  • US & Canada:
    +
  • UK: +

Fmoc-D-N-Me-Phg-OH

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Fmoc-Amino Acids
Catalog number
BAT-008444
CAS number
30925-12-3
Molecular Formula
C14H19NO4
Molecular Weight
265.3
IUPAC Name
(2R)-2-[methyl-[(2-methylpropan-2-yl)oxycarbonyl]amino]-2-phenylacetic acid
Synonyms
Fmoc D N Me Phg OH; Boc-D-N(Me)Phg-OH; N-BOC-N-methyl-D-phenylglycine
InChI
InChI=1S/C14H19NO4/c1-14(2,3)19-13(18)15(4)11(12(16)17)10-8-6-5-7-9-10/h5-9,11H,1-4H3,(H,16,17)/t11-/m1/s1
InChI Key
COABPHLHHQAKPL-LLVKDONJSA-N
Canonical SMILES
CC(C)(C)OC(=O)N(C)C(C1=CC=CC=C1)C(=O)O
1. Novel sst(4)-selective somatostatin (SRIF) agonists. 2. Analogues with beta-methyl-3-(2-naphthyl)alanine substitutions at position 8
Judit Erchegyi, et al. J Med Chem. 2003 Dec 18;46(26):5587-96. doi: 10.1021/jm0302445.
We present a family of human sst(4)-selective, high-affinity (IC(50) = 2-4 nM) cyclic somatostatin (SRIF) octapeptides. These peptides result from the substitution of dTrp(8) in H-c[Cys(3)-Phe(6)-Phe(7)-DTrp(8)-Lys(9)-Thr(10)-Phe(11)-Cys(14)]-OH (SRIF numbering) (ODT-8) by one of the four conformationally biased stereoisomers of beta-methyl-3-(2-naphthyl)alanine (beta-Me2Nal). Whereas H-c[Cys-Phe-Phe-DNal-Lys-Thr-Phe-Cys]-OH (ODN-8, 2) has high affinity and marginal selectivity for human sst(3) (Reubi et al., Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 13973-13978), H-c[Cys-Phe-Tyr-D-threo-beta-Me2Nal-Lys-Thr-Phe-Cys]-OH (5) has high affinity for all sst's except for sst(1); H-c[Cys-Phe-Tyr-L-threo-beta-Me2Nal-Lys-Thr-Phe-Cys]-OH (6) has high affinity for sst(4) (IC(50) = 2.1 nM), with more than 50-fold selectivity toward the other receptors. Analogues 7 and 8, containing d- and l-erythro-beta-Me2Nal instead of the corresponding threo derivatives at position 8, are essentially inactive at all receptors. Substitution of Tyr(7) in 5 and 6 by Aph(7) resulted in 9 and 10 with similar affinity patterns overall yet lowered affinity. The substitution of DCys(3) for Cys(3) in 5 and 6 yielded H-c[DCys-Phe-Tyr-D-threo-beta-Me2Nal-Lys-Thr-Phe-Cys]-OH (11) and H-c[DCys-Phe-Tyr-L-threo-beta-Me2Nal-Lys-Thr-Phe-Cys]-OH (12), with biological profiles almost identical to those of their parents 5 and 6 (i.e., high affinity for sst(2-5) for 11 and high affinity and selectivity for sst(4) for 12). Analogue 12, with high sst(4) affinity combined with the highest sst(4) selectivity among all tested compounds, is an agonist in the cAMP accumulation assay (EC(50) = 1.29 nM). Cold monoiodination of 12 yielded 14, with loss of sst(4) selectivity and loss of high affinity (IC(50) = 21 nM). Introduction of Tyr(2) in 9 and 10 and substitution of Cys(3) by dCys(3), to yield 15 and 16 (IC(50) = 9.8 and 61 nM, respectively, for sst(4) and limited selectivity), failed to generate a high-affinity (125)iodinatable sst(4)-selective ligand. Substitution of Phe by Tyr at position 11 in H-c[DCys-Phe-Phe-L-threo-beta-Me2Nal-Lys-Thr-Phe-Cys]-OH yielded 18 (IC(50) = 11.8 nM at sst(4)), with limited sst(4) selectivity (30-fold or greater at the other receptors) yet only slightly improved affinity over that of 14. Cold monoiodination of 18 yielded 20 (IC(50) = 30 nM at sst(4) and high selectivity). Whereas we were able, in this study, to identify a new family of sst(4)-selective, high-affinity compounds, our additional goal, to identify highly potent and sst(4)-selective ligands amenable to (125)iodination, could not be achieved satisfactorily. On the other hand, some of the diastereomers identified in this study, such as 5, 11, 17, and 19, are very potent ligands at all receptors but sst(1).
2. Somatostatin receptor 1 selective analogues: 2. N(alpha)-Methylated scan
Judit Erchegyi, et al. J Med Chem. 2005 Jan 27;48(2):507-14. doi: 10.1021/jm049520l.
Des-AA(1,2,5)-[d-Trp(8)/d-Nal(8),IAmp(9)]SRIF (AA = amino acid, Nal = 3-(2-naphthyl)-alanine, IAmp = 4-(N-isopropyl)-aminomethylphenylalanine, SRIF = somatostatin), with or without a tyrosine or monoiodotyrosine, were scanned with the introduction of a backbone N-methyl group and tested for binding affinity at the five human somatostatin receptors (sst(1)(-)(5)). N(alpha)-Methylation resulted in loss of sst affinity (2- to >5-fold) when introduced at residues Lys(4) (6), Phe(6) (7), Phe(7) (8), Thr(10) (11), and Phe(11) (12) of the parent compound Des-AA(1,2,5)-[d-Nal(8),IAmp(9)]SRIF (4). N(alpha)-Methylation was tolerated at residues Cys(3) (5), d-Nal(8) (9), Thr(12) (13), and Cys(14) (15) with retention of binding sst affinity and selectivity and resulted in an increase in sst binding affinity at positions IAmp(9) (10) and Ser(13) (14). In these series, the d-Trp(8) substitution versus d-Nal(8) is clearly superior. C-Terminally lysine-extended analogues (21-25) retained sst(1) selectivity and binding affinity when compared to their d-Nal(8)- (4) or d-Trp(8)- (3) containing parent. Des-AA(1,2,5)-[d-Trp(8), (N(alpha)Me)IAmp(9)]SRIF (17), Des-AA(1,2,5)-[d-Trp(8),IAmp(9),(N(alpha)Me)Ser(13)]SRIF (19), Des-AA(1,2,5)-[d-Trp(8),IAmp(9),(N(alpha)Me)Cys(14)]SRIF (20), Des-AA(1,2,5)-[d-Trp(8),(N(alpha)Me)IAmp(9),Tyr(11)]SRIF (34), and Des-AA(1,2,5)-[d-Agl(8)(N(beta)Me,2-naphthoyl),IAmp(9),Tyr(11)]SRIF (42) (Agl = aminoglycine) are sst(1) agonists in their ability to inhibit forskolin-induced cAMP production.
3. Novel sst(4)-selective somatostatin (SRIF) agonists. 3. Analogues amenable to radiolabeling
Judit Erchegyi, Beatrice Waser, Jean-Claude Schaer, Renzo Cescato, Jean François Brazeau, Jean Rivier, Jean Claude Reubi J Med Chem. 2003 Dec 18;46(26):5597-605. doi: 10.1021/jm030245x.
After our discovery that H-c[Cys-Phe-Phe-DNal-Lys-Thr-Phe-Cys]-OH (ODN-8) had high affinity and marginal selectivity for human sst(3) (part 2 of this series: Erchegyi et al. J. Med. Chem., preceding paper in this issue)(11) and that H-c[Cys-Phe-Phe-DTrp-Lys-Thr-Phe-Cys]-OH (ODT-8, 3) had high affinity and marginal selectivity for human sst(4), that H-c[Cys-Phe-Tyr-D-threo-beta-Me2Nal-Lys-Thr-Phe-Cys]-OH had high affinity for all sst's except for sst(1), and that H-c[Cys-Phe-Tyr-L-threo-beta-Me2Nal-Lys-Thr-Phe-Cys]-OH had high affinity for sst(4) (IC(50) = 2.1 nM), with more than 50-fold selectivity toward the other receptors (parts 1 and 2 of this series: Rivier et al. and Erchegyi et al. J. Med. Chem., preceding papers in this issue), we found H-c[Cys-Phe-Phe-Trp-Lys-Thr-Phe-Cys]-OH (OLT-8, 2), H-c[Cys-Phe-Phe-L-threo-beta-MeTrp-Lys-Thr-Phe-Cys]-OH (4) and H-c[Cys-Phe-Phe-D-threo-beta-MeTrp-Lys-Thr-Phe-Cys]-OH (5) to have very high affinity for sst(4) (IC(50) = 0.7, 1.8, and 4.0 nM, respectively) and 5- to 10-fold selectivity versus the other sst's. From earlier work, we concluded that an l-amino acid at position 8 and a tyrosine or 4-aminophenylalanine substitution at position 7 may lead to high sst(4) selectivity. In fact, [Tyr(7)]-2 (6) and [Tyr(7)]-3 (7) show ca. 5-fold selectivity for sst(4), and [Aph(7)]-2 (8) and [Aph(7)]-3 (9) have high sst(4) affinity (IC(50) = 1.2 and 0.88 nM, respectively) and selectivity, suggesting that indeed an l-residue at position 8 will direct selectivity toward sst(4). Unexpectedly, [Ala(7)]-2 (10) and [Ala(7)]-3 (11) have very high sst(4) affinity (IC(50) = 0.84 and 0.98 nM, respectively) and selectivity (>600- and 200-fold, respectively). The combination of Tyr(2) and dTrp(8) in analogues 14 and 22 did not affect the affinity of the analogues for sst(4) (IC(50) = 1.2 and 1.1 nM, respectively) but resulted in loss of selectivity, whereas the combination of Tyr(2) and LTrp(8) in H-Tyr-c[Cys-Phe-Aph-Trp-Lys-Thr-Phe-Cys]-OH (13) and H-Tyr-c[Cys-Phe-Ala-Trp-Lys-Thr-Phe-Cys]-OH(19) retained high affinity (IC(50) = 1.9 and 1.98 nM, respectively) and sst(4) selectivity (>50 and >250, respectively). Interestingly, the same substitutions at positions 2 and 7, with l-threo-beta-MeTrp at position 8, yielded a much less selective analogue (20). Carbamoylation of the N-terminus of most of these analogues resulted in slightly improved affinity, selectivity, or both. Other amino acid substitutions in this series, such as those with Amp (25, 26), Orn (27), or IAmp (29) at position 7, were also tolerated but with a 2- to 3-fold loss of affinity and concomitant loss of selectivity. Analogous peptides with a tyrosine at position 11 (31-36) were less selective than the corresponding peptides with a tyrosine at position 2. Several analogues in this series compared favorably with the non-peptide L-803,087 (37) in terms of affinity and selectivity. Analogues 8, 10, and 21 potently inhibited the forskolin-stimulated cAMP production in sst(4)-transfected cells, therefore acting as full agonists. Cold monoiodination of 19 yielded 21, with retention of high sst(4) selectivity and affinity (IC(50) = 3.5 nM). (125)Iodinated 19 selectively binds to sst(4)-transfected cells but not to sst(1-3)- or sst(5)-transfected cells. Binding in sst(4)-transfected cells was completely displaced by SRIF-28 or the sst(4)-selective L-803,087.
Online Inquiry
Verification code
Inquiry Basket