Fmoc-D-Tic(7-Me)-OH
Need Assistance?
  • US & Canada:
    +
  • UK: +

Fmoc-D-Tic(7-Me)-OH

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Cyclic Amino Acids
Catalog number
BAT-008449
Molecular Formula
C26H23NO4
Molecular Weight
413.47
IUPAC Name
(R)-2-(((9H-fluoren-9-yl)methoxy)carbonyl)-7-methyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid
1. Reactivity of Nitric Oxide and Nitrosonium Ion with Copper(II/I) Schiff Base Complexes: Mechanistic Aspects of Imine C═N Bond Cleavage and Oxidation of Pyridine-2-aldehyde to Pyridine-2-carboxylic Acid
Saikat Mishra, Shibaditya Kumar, Anirban Bhandari, Aniruddha Das, Pallav Mondal, Geeta Hundal, Marilyn M Olmstead, Apurba K Patra Inorg Chem. 2022 May 2;61(17):6421-6437. doi: 10.1021/acs.inorgchem.1c04038. Epub 2022 Apr 22.
Four Schiff base ligands of the general formulas [6-(R)-2-pyridyl-N-(2'-methylthiophenyl)methylenimine] (RL1) and 6-p-chlorophenyl-2-pyridyl-N-(2'-phenylthiophenyl)methylenimine (RL2), where R = H, Me, p-ClPh, and their bis-ligand copper(II) and copper(I) complexes, 1-4 and 1'-4', respectively, were synthesized and characterized. The reactivities of 1-4 with nitric oxide (NO) gas and of 1'-4' with solid NOBF4 (NO+) were examined in dry acetonitrile in the presence and absence of water (H2O). The results revealed that, in the absence of H2O, complexes 1-4 (or 1'-4') reacts with NO (or NOBF4), leading to imine C═N bond cleavage of both (or one) Schiff base(s) that generates 2 (or 1) equiv of 2-(methyl/phenyl)thiobenzenediazonium perchlorates (5/6) and the corresponding picolaldehyde (RPial) via a copper nitrosyl of a {CuNO}10-type intermediate. In the presence of H2O, the in situ formed RPial get oxidized to the corresponding picolinic acid (RPicH) via an in situ formed LCuIOH intermediate (LCuI + HO-NO → LCuIOH + NO+; L = RL1/RL2/RPic- and νO-H of CuIOH = 3650 cm-1) and subsequently produces, with the aid of NO+ oxidant, the picolinate-ligated copper(II) complexes (i) [(HPic)2Cu] (7), [(MePic)4Cu3(NO3)2]n·H2O (8·H2O), or [(ClPhPic)2Cu] (9) when NO reacts with 1-4 or (ii) [(RPic)CuII(RL1/RL2)]+ when NO+ reacts with 1'-4'. The CuII to CuI reduction of [(RPic)CuII(RL1/RL2)]+ is essential for C═N cleavage of the remaining RL1/RL2 Schiff base; excess NO can do it. The X-ray structures (1, 1', 3', 5, 7, and 8) and spectroscopic results revealed the role of CuII/I, NO, NO+, and H2O, shedding light on the mechanism of C═N bond cleavage and the oxidation of pyridine-2-aldehyde to pyridine-2-carboxylic acid. The reaction of 1 with 15NO revealed that the terminal N of the N2+ group of 5 originates from 15NO [ν14N14N- = 2248 cm-1 and ν15N14N- = 2212 cm-1].
2. Daidzein as an antioxidant of lipid: effects of the microenvironment in relation to chemical structure
Jun Liang, Yu-Xi Tian, Li-Min Fu, Tian-He Wang, Hai-Jun Li, Peng Wang, Rui-Min Han, Jian-Ping Zhang, Leif H Skibsted J Agric Food Chem. 2008 Nov 12;56(21):10376-83. doi: 10.1021/jf801907m. Epub 2008 Oct 9.
Isoflavone daidzein (D, pK a1 = 7.47 +/- 0.02 and pK a2 = 9.65 +/- 0.07) was, through a study of the parent compound and its three methyl anisol derivatives 7-methyldaidzein (7-Me-D, pK a = 9.89 +/- 0.05), 4'-methyldaidzein (4'-Me-D, pK a = 7.43 +/- 0.03), and 7,4'-dimethyldaidzein (7,4'-diMe-D), found to retard lipid oxidation in liposomal membranes through two mechanisms: (i) radical scavenging for which the 4'-OH was more effective than the 7-OH group in agreement with the oxidation potentials: 0.69 V for 4'-OH and 0.92 V for 7-OH versus Ag/AgCl in acidic solution and 0.44 V for 4'-O(-) and 0.49 V for 7-O(-) in alkaline solution and (ii) change in membrane fluidity through incorporation of the isoflavones, in effect hampering radical mobility. The radical scavenging efficiency measured by the rate of the reaction with the ABTS(*)(+) in aqueous solution followed the order D > 7-Me-D > 4'-Me-D > 7,4'-diMe-D, as also found for antioxidant efficiency in liposomes when oxidation was initiated with the water-soluble AAPH radical and monitored as the formation of conjugate dienes. For oxidation initiated by the lipid-soluble AMVN radical, the antioxidant efficiency was ranked as 4'-Me-D > D > 7,4'-diMe-D > 7-Me-D, and change in fluorescence anisotropy of fluorescent probes bound to the membrane surface or inside the lipid bilayer confirmed the effects of isoflavones on the membrane fluidity, especially for 7,4'-diMe-D.
3. Highly active, thermally stable, ethylene-polymerisation pre-catalysts based on niobium/tantalum-imine systems
Carl Redshaw, et al. Chemistry. 2013 Jul 1;19(27):8884-99. doi: 10.1002/chem.201300453. Epub 2013 May 16.
The reactions of MCl5 or MOCl3 with imidazole-based pro-ligand L(1)H, 3,5-tBu2-2-OH-C6H2-(4,5-Ph2-1H-)imidazole, or oxazole-based ligand L(2)H, 3,5-tBu2-2-OH-C6H2 (1H-phenanthro[9,10-d])oxazole, following work-up, afforded octahedral complexes [MX(L(1,2))], where MX=NbCl4 (L(1), 1a; L(2), 2a), [NbOCl2(NCMe)] (L(1), 1b; L(2), 2b), TaCl4 (L(1), 1c; L(2), 2c), or [TaOCl2(NCMe)] (L(1), 1d). The treatment of α-diimine ligand L(3), (2,6-iPr2C6H3N=CH)2, with [MCl4(thf)2] (M=Nb, Ta) afforded [MCl4(L(3))] (M=Nb, 3a; Ta, 3b). The reaction of [MCl3(dme)] (dme=1,2-dimethoxyethane; M=Nb, Ta) with bis(imino)pyridine ligand L(4), 2,6-[2,6-iPr2C6H3N=(Me)C]2C5H3N, afforded known complexes of the type [MCl3(L(4))] (M=Nb, 4a; Ta, 4b), whereas the reaction of 2-acetyl-6-iminopyridine ligand L(5), 2-[2,6-iPr2C6H3N=(Me)C]-6-Ac-C5H3N, with the niobium precursor afforded the coupled product [({2-Ac-6-(2,6-iPr2C6H3N=(Me)C)C5H3N}NbOCl2)2] (5). The reaction of MCl5 with Schiff-base pro-ligands L(6)H-L(10)H, 3,5-(R(1))2-2-OH-C6H2CH=N(2-OR(2)-C6H4), (L(6)H: R(1)=tBu, R(2)=Ph; L(7)H: R(1)=tBu, R(2)=Me; L(8)H: R(1)=Cl, R(2)=Ph; L(9)H: R(1)=Cl, R(2)=Me; L(10)H: R(1)=Cl, R(2)=CF3) afforded [MCl4(L(6-10))] complexes (M=Nb, 6a-10a; M=Ta, 6b-9b). In the case of compound 8b, the corresponding zwitterion was also synthesised, namely [Ta(-)Cl5(L(8)H)(+)]·MeCN (8c). Unexpectedly, the reaction of L(7)H with TaCl5 at reflux in toluene led to the removal of the methyl group and the formation of trichloride 7c [TaCl3(L(7-Me))]; conducting the reaction at room temperature led to the formation of the expected methoxy compound (7b). Upon activation with methylaluminoxane (MAO), these complexes displayed poor activities for the homogeneous polymerisation of ethylene. However, the use of chloroalkylaluminium reagents, such as dimethylaluminium chloride (DMAC) and methylaluminium dichloride (MADC), as co-catalysts in the presence of the reactivator ethyl trichloroacetate (ETA) generated thermally stable catalysts with, in the case of niobium, catalytic activities that were two orders of magnitude higher than those previously observed. The effects of steric hindrance and electronic configuration on the polymerisation activity of these tantalum and niobium pre-catalysts were investigated. Spectroscopic studies ((1)H NMR, (13)C NMR and (1)H-(1)H and (1)H-(13)C correlations) on the reactions of compounds 4a/4b with either MAO(50) or AlMe3/[CPh3](+)[B(C6F5)4](-) were consistent with the formation of a diamagnetic cation of the form [L(4)AlMe2](+) (MAO(50) is the product of the vacuum distillation of commercial MAO at +50 °C and contains only 1 mol% of Al in the form of free AlMe3). In the presence of MAO, this cationic aluminium complex was not capable of initiating the ROMP (ring opening metathesis polymerisation) of norbornene, whereas the 4a/4b systems with MAO(50) were active. A parallel pressure reactor (PPR)-based homogeneous polymerisation screening by using pre-catalysts 1b, 1c, 2a, 3a and 6a, in combination with MAO, revealed only moderate-to-good activities for the homo-polymerisation of ethylene and the co-polymerisation of ethylene/1-hexene. The molecular structures are reported for complexes 1a-1c, 2b, 5, 6a, 6b, 7a, 8a and 8c.
Online Inquiry
Verification code
Inquiry Basket