Fmoc-DL-Phe(4-Ac)-OH
Need Assistance?
  • US & Canada:
    +
  • UK: +

Fmoc-DL-Phe(4-Ac)-OH

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Fmoc-Amino Acids
Catalog number
BAT-001863
Molecular Formula
C26H23NO5
Molecular Weight
429.4
Purity
≥ 95%
1. Facile synthesis of magnetic ZnFe2O4/AC composite to activate peroxydisulfate for dye degradation under visible light irradiation
Tingting Song, Quanbao He, Xiaoyan Meng, Zhangxing He, Ming Ge Environ Sci Pollut Res Int. 2022 Oct;29(50):76321-76338. doi: 10.1007/s11356-022-21253-3. Epub 2022 Jun 6.
Heterogeneous photocatalysis/persulfate oxidation process has been considered as a promising technology for dye contaminants removal. The magnetic ZnFe2O4/active carbon (AC) composites were hydrothermally synthesized and firstly used to activate peroxydisulfate (PDS) for rhodamine B (RhB) degradation under visible LED light irradiation. The optimized Vis-ZnFe2O4/AC(4/1)-PDS system can enhance the RhB degradation efficiency by 32.01% and 13.87% compared with Vis-ZnFe2O4-PDS and Vis-AC-PDS systems, respectively. The influence of operational parameters such as catalyst dosage (0.2 - 0.4 g L-1), PDS concentration (1.0 - 2.0 g L-1), temperature (25 - 45 °C), solution pH (2.7 - 10.9), and coexisting inorganic ions (Cl-, NO3-, HCO3-, PO43-, Cu2+, Fe3+, and Ca2+) on RhB degradation was studied, and 100% of RhB (20 mg L-1) was degraded after 80 min at operational condition: 0.30 g L-1 of ZnFe2O4/AC(4/1) and 1.5 g L-1 of PDS, solution pH of 2.74, reaction temperature of 25 °C. The quenching experiments, EPR test, and XPS analysis were employed to reveal the proposed mechanism, which demonstrated that 1O2 played a more important role than other reactive species (SO4·-, ·OH, O2·-, and h+) in RhB degradation. The generation of 1O2 via the two routes was as follows: (i) the in situ formed active oxygen (O*) reacted with HSO5- to produce 1O2; (ii) O2·- was oxidized by h+ to form 1O2. After five consecutive cycles, the photodegradation efficiency of RhB by ZnFe2O4/AC(4/1) catalyst slightly decreased from 88.52 to 83.92%, indicating the excellent reusability of ZnFe2O4/AC(4/1) photocatalyst. As designed, Vis-ZnFe2O4/AC-PDS oxidation system can effectively remove RhB from the different real water matrices, and the degradation efficiency of RhB in tap water, river water, and secondary effluent was 78.24%, 79.55%, and 74.53% after 80 min of reaction, respectively.
2. Hierarchically Hybrid Porous Co3O4@NiMoO4/CoMoO4 Heterostructures for High-Performance Electrochemical Energy Storage
Yan Wang, et al. ACS Appl Mater Interfaces. 2022 Feb 16;14(6):8282-8296. doi: 10.1021/acsami.1c23129. Epub 2022 Feb 3.
Hierarchical, ultrathin, and porous NiMoO4@CoMoO4 on Co3O4 hollow bones were successfully designed and synthesized by a hydrothermal route from the Co-precursor, followed by a KOH (potassium hydroxide) activation process. The hydrothermally synthesized Co3O4 nanowires act as the scaffold for anchoring the NiMoO4@CoMoO4 units but also show more compatibility with NiMoO4, leading to high conductivity in the heterojunction. The intriguing morphological features endow the hierarchical Co3O4@NiMoO4@CoMoO4 better electrochemical performance where the capacity of the Co3O4@NiMoO4@CoMoO4 heterojunction being 272 mA·h·g-1 at 1 A·g-1 can be achieved with a superior retention of 84.5% over 1000 cycles. The enhanced utilization of single/few NiMoO4@CoMoO4 shell layers on the Co3O4 core make it easy to accept extra electrons, enhancing the adsorption of OH- at the shell surface, which contribute to the high capacity. In our work, an asymmetric supercapacitor utilizing the optimized Co3O4@NiMoO4@CoMoO4 activated carbon (AC) as electrode materials was assembled, namely, Co3O4@NiMoO4@CoMoO4//AC device, yielding a maximum high energy density of 53.9 W·h·kg-1 at 1000 W·kg-1. It can retain 25.92 W·h·kg-1 even at 8100 W·kg-1, revealing its potential and viability for applications. The good power densities are ascribed to the porous feature from the robust architecture with recreated abundant mesopores on the composite, which assure improved conductivity and enhanced diffusion of OH- and also the electron transport. The work demonstrated here holds great promise for synthesizing other heterojunction materials M3O4@MMoO4@MMoO4 (M = Fe, Ni, Sn, etc).
3. Effect of 1,4,6-androstatriene-3,17-dione (ATD), 4-hydroxy-4-androstene-3,17-dione (4-OH-A) and 4-acetoxy-4-androstene-3,17-dione (4-Ac-A) on the 5 alpha-reduction of androgens in the rat prostate
M Motta, S Zoppi, A M Brodie, L Martini J Steroid Biochem. 1986 Oct;25(4):593-600. doi: 10.1016/0022-4731(86)90408-5.
The present study reports the effects exerted by 1,4,6-androstatriene-3,17-dione (ATD), 4-hydroxy-4-androstene-3,17-dione (4-OH-A) and 4-acetoxy-4-androstene-3,17-dione (4-Ac-A), three steroids known to inhibit the aromatization of androgens to estrogens, on the in vitro metabolism of labelled testosterone (T), dihydrotestosterone (DHT) and androstenedione (delta-4-A) in the ventral prostate of adult male rats. It has been found that ATD, in the concentration tested, does not influence the conversion of labelled T into DHT, but decreases the formation of 5 alpha-androstane-3 alpha,17 beta-diol and 5 alpha-androstane-3 beta,17 beta-diol (diols). On the contrary, 4-OH-A and 4-Ac-A simultaneously decrease the formation of DHT and the diols. When T is used as the substrate, the presence in the medium of these three steroids enhances the formation of delta-4-A and of 5 alpha-androstanedione (5 alpha-A). ATD, but not 4-OH-A and 4-Ac-A inhibits the conversion of labelled DHT into the diols. The transformation of labelled delta-4-A into 5 alpha-A is not modified by either ATD or 4-OH-A, while 4-Ac-A exerts only a small inhibition. These results suggest that the three aromatase inhibitors tested are able to profoundly modify the metabolism of T in the ventral prostate of the rat. In particular: 4-OH-A and 4-Ac-A are able to inhibit the conversion of T into DHT; ATD is able to inhibit the conversion of DHT into the diols; ATD and 4-OH-A do not inhibit the process of 5 alpha-reduction of delta-4-A into 5 alpha-A, while 4-Ac-A exerts only a minor effect. It is suggested that in the ventral prostate of the rat there are two different 5 alpha-reductase isoenzymes, one sensitive to the inhibitory effect of the steroid tested and which is responsible for the conversion of T into the 5 alpha-reduced metabolites of the 17-OH series (DHT and the diols), and a second one, insensitive to the effects of the three steroids, which affects the conversion of delta-4-A into 5 alpha-A.
Online Inquiry
Verification code
Inquiry Basket