1. Geometric and electronic structures of phenoxyl radicals hydrogen bonded to neutral and cationic partners
Maylis Orio, Olivier Jarjayes, Benoit Baptiste, Christian Philouze, Carole Duboc, Jenny-Lee Mathias, Laurent Benisvy, Fabrice Thomas Chemistry. 2012 Apr 23;18(17):5416-29. doi: 10.1002/chem.201102854. Epub 2012 Mar 13.
Two di-tert-butylphenols incorporating an N-methylbenzimidazole moiety in the ortho or para position have been synthesised ((Me)OH and (pMe)OH, respectively). Their X-ray structures evidence a hydrogen bond between the phenolic proton and the iminic nitrogen atom, whose nature is intra- and intermolecular, respectively. The present studies demonstrate that (Me)OH is readily oxidised by an intramolecular PET mechanism to form the hydrogen-bonded phenoxyl-N-methylbenzimidazolium system ((Me)OH)(.+) , whereas oxidation of (pMe)OH occurs by intermolecular PET, affording the neutral phenoxyl benzimidazole ((pMe)O)(.) system. The deprotonations of (Me)OH and (pMe)OH yield the corresponding phenolate species ((Me)O)(-) and ((pMe)O)(-), respectively, whilst that of the previously reported (H)OH (analogous to (Me)OH but lacking the N-methyl group) produces an unprecedented hydrogen-bonded phenol benzimidazolate species, as evidenced by its X-ray structure. The latter is believed to be in equilibrium in solution with its tautomeric phenolate form, as suggested by NMR, electrochemistry and DFT studies. The one-electron oxidations of the anions occur by a simple ET process affording phenoxyl radical species, whose electronic structure has been studied by HF-EPR spectroscopy and DFT calculations. In particular, analysis of the g(1) tensor shows the order 2.0079>2.0072>2.0069>2.0067 for ((Me)O)(.), ((H)O)(.), ((Me)OH)(.+) and ((H)OH)(.+), respectively. ((Me)O)(.) exhibits the largest g(1) tensor (2.0079), consistent with the absence of intramolecular hydrogen bond. The g(1) tensor of ((H)O)(.) is intermediate between those of ((Me)OH)(.+) and ((Me)O)(.) (g(1)=2.0072), indicating that the phenoxyl oxygen is hydrogen-bonded with a neutral benzimidazole partner.
3. Low-Dimensional Architectures in Isomeric cis-PtCl2{Ph2PCH2N(Ar)CH2PPh2} Complexes Using Regioselective-N(Aryl)-Group Manipulation
Peter De'Ath, Mark R J Elsegood, Noelia M Sanchez-Ballester, Martin B Smith Molecules. 2021 Nov 11;26(22):6809. doi: 10.3390/molecules26226809.
The solid-state behaviour of two series of isomeric, phenol-substituted, aminomethylphosphines, as the free ligands and bound to PtII, have been extensively studied using single crystal X-ray crystallography. In the first library, isomeric diphosphines of the type Ph2PCH2N(Ar)CH2PPh2 [1a-e; Ar = C6H3(Me)(OH)] and, in the second library, amide-functionalised, isomeric ligands Ph2PCH2N{CH2C(O)NH(Ar)}CH2PPh2 [2a-e; Ar = C6H3(Me)(OH)], were synthesised by reaction of Ph2PCH2OH and the appropriate amine in CH3OH, and isolated as colourless solids or oils in good yield. The non-methyl, substituted diphosphines Ph2PCH2N{CH2C(O)NH(Ar)}CH2PPh2 [2f, Ar = 3-C6H4(OH); 2g, Ar = 4-C6H4(OH)] and Ph2PCH2N(Ar)CH2PPh2 [3, Ar = 3-C6H4(OH)] were also prepared for comparative purposes. Reactions of 1a-e, 2a-g, or 3 with PtCl2(η4-cod) afforded the corresponding square-planar complexes 4a-e, 5a-g, and 6 in good to high isolated yields. All new compounds were characterised using a range of spectroscopic (1H, 31P{1H}, FT-IR) and analytical techniques. Single crystal X-ray structures have been determined for 1a, 1b∙CH3OH, 2f∙CH3OH, 2g, 3, 4b∙(CH3)2SO, 4c∙CHCl3, 4d∙½Et2O, 4e∙½CHCl3∙½CH3OH, 5a∙½Et2O, 5b, 5c∙¼H2O, 5d∙Et2O, and 6∙(CH3)2SO. The free phenolic group in 1b∙CH3OH, 2f∙CH3OH,2g, 4b∙(CH3)2SO, 5a∙½Et2O, 5c∙¼H2O, and 6∙(CH3)2SO exhibits various intra- or intermolecular O-H∙∙∙X (X = O, N, P, Cl) hydrogen contacts leading to different packing arrangements.