Fmoc-Glu(AspG3)-OH
Need Assistance?
  • US & Canada:
    +
  • UK: +

Fmoc-Glu(AspG3)-OH

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Others
Catalog number
BAT-014286
CAS number
1858229-70-5
Molecular Formula
C80H118N8O27
Molecular Weight
1623.83
IUPAC Name
(2S)-5-[[(2S)-1-[[(2S)-4-[[1,4-bis[(2-methylpropan-2-yl)oxy]-1,4-dioxobutan-2-yl]amino]-1-[[(2S)-1,4-bis[(2-methylpropan-2-yl)oxy]-1,4-dioxobutan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-4-[[4-[[1,4-bis[(2-methylpropan-2-yl)oxy]-1,4-dioxobutan-2-yl]amino]-1-[[(2S)-1,4-bis[(2-methylpropan-2-yl)oxy]-1,4-dioxobutan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-2-(9H-fluoren-9-ylmethoxycarbonylamino)-5-oxopentanoic acid
Synonyms
Fmoc-Glu(Asp[Asp{Asp(OtBu)-OtBu}-Asp(OtBu)-OtBu]-Asp{Asp(OtBu)-OtBu}-Asp(OtBu)-OtBu])-OH
InChI
InChI=1S/C80H118N8O27/c1-73(2,3)108-60(93)38-52(68(102)112-77(13,14)15)83-58(91)36-50(65(98)86-54(70(104)114-79(19,20)21)40-62(95)110-75(7,8)9)82-57(90)35-49(81-56(89)34-33-48(67(100)101)88-72(106)107-42-47-45-31-27-25-29-43(45)44-30-26-28-32-46(44)47)64(97)85-51(66(99)87-55(71(105)115-80(22,23)24)41-63(96)111-76(10,11)12)37-59(92)84-53(69(103)113-78(16,17)18)39-61(94)109-74(4,5)6/h25-32,47-55H,33-42H2,1-24H3,(H,81,89)(H,82,90)(H,83,91)(H,84,92)(H,85,97)(H,86,98)(H,87,99)(H,88,106)(H,100,101)/t48-,49-,50?,51-,52?,53?,54-,55-/m0/s1
InChI Key
WJIWTRCSQCJVJZ-PKBBHHQZSA-N
Canonical SMILES
CC(C)(C)OC(=O)CC(C(=O)OC(C)(C)C)NC(=O)CC(C(=O)NC(CC(=O)OC(C)(C)C)C(=O)OC(C)(C)C)NC(=O)CC(C(=O)NC(CC(=O)NC(CC(=O)OC(C)(C)C)C(=O)OC(C)(C)C)C(=O)NC(CC(=O)OC(C)(C)C)C(=O)OC(C)(C)C)NC(=O)CCC(C(=O)O)NC(=O)OCC1C2=CC=CC=C2C3=CC=CC=C13
1. A glutamic acid-based traceless linker to address challenging chemical protein syntheses
Riley J Giesler, Paul Spaltenstein, Michael T Jacobsen, Weiliang Xu, Mercedes Maqueda, Michael S Kay Org Biomol Chem. 2021 Oct 20;19(40):8821-8829. doi: 10.1039/d1ob01611c.
Native chemical ligation (NCL) enables the total chemical synthesis of proteins. However, poor peptide segment solubility remains a frequently encountered challenge. Here we introduce a traceless linker that can be temporarily attached to Glu side chains to overcome this problem. This strategy employs a new tool, Fmoc-Glu(AlHx)-OH, which can be directly installed using standard Fmoc-based solid-phase peptide synthesis. The incorporated residue, Glu(AlHx), is stable to a wide range of chemical protein synthesis conditions and is removed through palladium-catalyzed transfer under aqueous conditions. General handling characteristics, such as efficient incorporation, stability and rapid removal were demonstrated through a model peptide modified with Glu(AlHx) and a Lys6 solubilizing tag. Glu(AlHx) was incorporated into a highly insoluble peptide segment during the total synthesis of the bacteriocin AS-48. This challenging peptide was successfully synthesized and folded, and it has comparable antimicrobial activity to the native AS-48. We anticipate widespread use of this easy-to-use, robust linker for the preparation of challenging synthetic peptides and proteins.
2. Substrate recognition mechanism of carboxypeptidase Y
H Nakase, S Murata, H Ueno, R Hayashi Biosci Biotechnol Biochem. 2001 Nov;65(11):2465-71. doi: 10.1271/bbb.65.2465.
To clarify the substrate-recognition mechanism of carboxypeptidase Y, Fmoc-(Glu)n Ala-OH (n = 1 to 6), Fmoc-(Glu)n Ala-NH2 (1 to 5), and Fmoc-Lys(Glu)3Ala-NH2 were synthesized, and kinetic parameters for these substrates were measured. Km for Fmoc-peptides significantly decreased as peptide length increased from n = 1 to n = 5 with only slight changes in kcat. Km for Fmoc-(Glu)(5,6)Ala-OH were almost the same as one for protein substrates described previously (Nakase et al., Bull. Chem. Soc. Jpn., 73, 2587-2590). These results show that the enzyme has six subsites (S1' and S1-S5). Each subsite affinity calculated from the Km revealed subsite properties, and from the differences of subsite affinity between pH 6.5 and 5.0, the residues in each subsite were predicted. For Fmoc-peptide amide substrates, the priorities of amidase and carboxamide peptidase activities were dependent on the substrate. It is likely that the interactions between side chains of peptide and subsites compensate for the lack of P1'-S1' interaction, so the amidase activity prevailed for Fmoc-(Glu)(3,5)Ala-NH2. These results suggest that these subsites contribute extensively to substrate recognition rather than a hydrogen bond network.
3. Improved Handling of Peptide Segments Using Side Chain-Based "Helping Hand" Solubilizing Tools
Michael T Jacobsen, Paul Spaltenstein, Riley J Giesler, Danny Hung-Chieh Chou, Michael S Kay Methods Mol Biol. 2022;2530:81-107. doi: 10.1007/978-1-0716-2489-0_7.
Maintaining high, or even sufficient, solubility of every peptide segment in chemical protein synthesis (CPS) remains a critical challenge; insolubility of just a single peptide segment can thwart a total synthesis venture. Multiple approaches have been used to address this challenge, most commonly by employing a chemical tool to temporarily improve peptide solubility. In this chapter, we discuss chemical tools for introducing semipermanent solubilizing sequences (termed helping hands) at the side chains of Lys and Glu residues. We describe the synthesis, incorporation by Fmoc-SPPS, and cleavage conditions for utilizing these two tools. For Lys sites, we discuss the Fmoc-Ddap-OH dimedone-based linker, which is achiral, synthesized in one step, can be introduced directly at primary amines, and is removed using hydroxylamine (or hydrazine). For Glu sites, we detail the new Fmoc-SPPS building block, Fmoc-Glu(AlHx)-OH, which can be prepared in an efficient process over two purifications. Solubilizing sequences are introduced directly on-resin and later cleaved with palladium-catalyzed transfer under aqueous conditions to restore a native Glu side chain. These two chemical tools are straightforward to prepare and implement, and we anticipate continued usage in "difficult" peptide segments following the protocols described herein.
Online Inquiry
Verification code
Inquiry Basket