1. Solid-phase synthesis of tailed cyclic RGD peptides using glutamic acid: unexpected glutarimide formation
Junmin Zhu, Roger E Marchant J Pept Sci. 2008 Jun;14(6):690-6. doi: 10.1002/psc.975.
To provide multiple conjugating sites on cyclic peptides for their increasing biomedical applications, a tailed cyclic RGD peptide, c[RGDfE(GGGKK-NH(2))] was designed with c(RGDfE) linked through Glu to a tail consisting of a spacer of three Gly residues and a linker of two Lys residues. The spacer is used to increase the mobility and binding ability of the c(RGDfE) ligand, and the linker is used to proved multiple active sites for conjugating other molecules or biomaterials. We found that the sequence of Glu(Gly)-OAll leads to glutarimide formation, which disrupts the formation of cyclic RGD peptides. However, our results show that glutarimide formation is sequence dependent and can be inhibited by incorporating an amino acid like Lys(Boc) with steric hindrance from the protecting group. To prevent glutarimide formation, Ser(tBu) was used to replace the glycine in the GGG spacer adjacent to the residue of Glu, and a tailed cyclic RGD peptide, c[RGDfE(SGGKK-NH(2))] was successfully obtained.
2. Cyclotriveratrylene (CTV) as a new chiral triacid scaffold capable of inducing triple helix formation of collagen peptides containing either a native sequence or Pro-Hyp-Gly repeats
Erik T Rump, Dirk T S Rijkers, Hans W Hilbers, Philip G de Groot, Rob M J Liskamp Chemistry. 2002 Oct 18;8(20):4613-21. doi: 10.1002/1521-3765(20021018)8:203.0.CO;2-R.
A new triacid scaffold is described based on the cone-shaped cyclotriveratrylene (CTV) molecule that facilitates the triple helical folding of peptides containing either a unique blood platelet binding collagen sequence or collagen peptides composed of Pro-Hyp-Gly repeats. The latter were synthesized by segment condensation using Fmoc-Pro-Hyp-Gly-OH. Peptides were coupled to this CTV scaffold and also coupled to the Kemp's triacid (KTA) scaffold. After assembly of peptide H-Gly-[Pro-Hyp-Gly]2-Phe-Hyp-Gly-Glu(OAll)-Arg-Gly-Val-Glu (OAll)-Gly-[Pro-Hyp-Gly]2-NH2 (13) by an orthogonal synthesis strategy to both triacid scaffolds, followed by deprotection of the allyl groups, the molecular constructs spontaneously folded into a triple helical structure. In contrast, the non-assembled peptides did not. The melting temperature (Tm) of (+/-) CTV[CH2C(O)N(H)Gly-[Pro-Hyp-Gly]2-Phe-Hyp-Gly-Glu-Arg-Gly-Val-Glu-Gly- [Pro-Hyp-Gly]2-NH2]3 (14) is 19 degrees C, whereas KTA[Gly-Gly-[Pro-Hyp-Gly]2-Phe-Hyp-Gly-Glu-Arg-Gly-Val-Glu-Gly- [Pro-Hyp-Gly]2-NH2]3 (15) has a Tm of 20 degrees C. Thus, it was shown for the first time that scaffolds were also effective in stabilizing the triple helix of native collagen sequences. The different stabilizing properties of the two CTV enantiomers could be measured after coupling of racemic CTV triacid to the collagen peptide, and subsequent chromatographic separation of the diastereomers. After assembly of the two chiral CTV scaffolds to the model peptide H-Gly-Gly-(Pro-Hyp-Gly)5-NH2 (24), the (+)-enantiomer of CTV 28b was found to serve as a better triple helix-inducing scaffold than the (-)-enantiomer 28a. In addition to an effect of the chirality of the CTV scaffold, a certain degree of flexibility between the CTV cone and the folded peptide was also shown to be of importance. Restricting the flexibility from two to one glycine residues resulted in a significant difference between the two collagen mimics 20a and 20b, whereas the difference was only slight when two glycine residues were present between the CTV scaffold and the peptide sequence in collagen mimics 30a and 30b.
3. Synthesis of linear and cyclic phosphopeptides as ligands for the N-terminal SH2-domain of protein tyrosine phosphatase SHP-1
Diana Imhof, Doreen Nothmann, Mohammad Safa Zoda, Kornelia Hampel, Jenny Wegert, Frank D Böhmer, Siegmund Reissmann J Pept Sci. 2005 Jul;11(7):390-400. doi: 10.1002/psc.631.
Linear and cyclic phosphopeptides related to the pY2267 binding site of the epithelial receptor tyrosine kinase Ros have been synthesized as ligands for the amino-terminal SH2 (src homology) domain of protein tyrosine phosphatase SHP-1. The synthesis was accomplished by Fmoc-based solid-phase methodology using side-chain unprotected phosphotyrosine for the linear and mono-benzyl protected phosphotyrosine for the cyclic peptides. According to molecular modelling, the incorporation of a glycine residue between Lys (position pY-1 relative to phosphotyrosine) and Asp or Glu (position pY+2) was recommended for the cyclic candidates. The preparation of these peptides was successfully performed by the incorporation of a Fmoc-Xxx(Gly-OAll)-OH (Xxx = Asp, Glu) dipeptide building block that was prepared in solution prior to SPPS. The cyclization was achieved with PyBOP following Alloc/OAll-deprotection. This study demonstrates the usefulness of allyl-type protecting groups for the generation of side-chain cyclized phosphopeptides. Alloc/OAll-deprotection and cyclization are compatible with phosphorylated tyrosine.