Fmoc-Lys(Mmt)-Alko-PEG Resin
Need Assistance?
  • US & Canada:
    +
  • UK: +

Fmoc-Lys(Mmt)-Alko-PEG Resin

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Wang resins are the standard supports for the preparation of peptide acids by the Fmoc batch solid phase synthesis strategy. Fmoc amino acids are pre-loaded to Wang resins so that that epimerization and dipeptide formation are minimized.

Category
Wang Resin with Amino Acids
Catalog number
BAT-001141
Synonyms
Fmoc-Lys(Mmt)-Wang-PEG Resin; N-α-(9-Fluorenylmethoxycarbonyl)-N-ε-(4-methoxytrityl)-L-lysine p-methoxybenzyl alcohol polyethyleneglycol resin
DVB Crosslinking
1% DVB
Substitution
1.0-1.4 meq/g
Storage
Store at 2-8 °C
1. Synthesis of the very acid-sensitive Fmoc-Cys(Mmt)-OH and its application in solid-phase peptide synthesis
K Barlos, D Gatos, O Hatzi, N Koch, S Koutsogianni Int J Pept Protein Res. 1996 Mar;47(3):148-53. doi: 10.1111/j.1399-3011.1996.tb01338.x.
S-4-methoxytrityl cysteine was synthesized and converted into the corresponding Fmoc-Cys(Mmt)-OH by its reaction with Fmoc-OSu. As compared to the corresponding Fmoc-Cys(Trt)-OH, the S-Mmt-function was found to be considerably more acid labile. Quantitative S-Mmt-removal occurs selectively in the presence of groups of the tert butyl type and S-Trt by treatment with 0.5-1.0% TFA. The new derivative was successfully utilized in the SPPS of Tyr1-somatostatin on 2-chlorotrityl resin. In this synthesis groups of the Trt-type were exclusively used for amino acid side-chain protection. Quantitative cleavage from the resin and complete deprotection was performed by treatment with 3% TFA in DCM-TES (95:5) for 30 min at RT. We observed no reduction of tryptophan under these conditions.
2. Synthesis and biological evaluation of copper-64 radiolabeled [DUPA-6-Ahx-(NODAGA)-5-Ava-BBN(7-14)NH2], a novel bivalent targeting vector having affinity for two distinct biomarkers (GRPr/PSMA) of prostate cancer
Rajendra Prasad Bandari, et al. Nucl Med Biol. 2014 Apr;41(4):355-63. doi: 10.1016/j.nucmedbio.2014.01.001. Epub 2014 Jan 10.
Gastrin-releasing peptide receptors (GRPr) and prostate-specific membrane antigen (PSMA) are two identifying biomarkers expressed in very high numbers on prostate cancer cells and could serve as a useful tool for molecular targeting and diagnosis of disease via positron-emission tomography (PET). The aim of this study was to produce the multipurpose, bivalent [DUPA-6-Ahx-((64)Cu-NODAGA)-5-Ava-BBN(7-14)NH2] radioligand for prostate cancer imaging, where DUPA = (2-[3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid), a small-molecule, PSMA-targeting probe, 6Ahx = 6-aminohexanoic acid, 5-Ava = 5-aminovaleric acid, NODAGA = [2-(4,7-biscarboxymethyl)-1,4,7-(triazonan-1-yl)pentanedioic acid] (a derivative of NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid)), and BBN(7-14)NH2 = bombesin, a GRPr-specific peptide targeting probe. Methods: The PSMA/GRPr dual targeting ligand precursor [DUPA-6-Ahx-K-5-Ava-BBN(7-14)NH2], was synthesized by solid-phase and manual peptide synthesis, after which NODAGA was added via manual conjugation to the ε-amine of lysine (K). The new bivalent GRPr/PSMA targeting vector was purified by reversed-phase high performance liquid chromatography (RP-HPLC), characterized by electrospray-ionization mass spectrometry (ESI-MS), and metallated with (64)CuCl2 and (nat)CuCl2. The receptor binding affinity was evaluated in human, prostate, PC-3 (GRPr-positive) and LNCaP (PSMA-positive) cells and the tumor-targeting efficacy determined in severe combined immunodeficient (SCID) and athymic nude mice bearing PC-3 and LNCaP tumors. Whole-body maximum intensity microPET/CT images of PC-3/LNCaP tumor-bearing mice were obtained 18 h post-injection (p.i.). Results: Competitive binding assays in PC-3 and LNCaP cells indicated high receptor binding affinity for the [DUPA-6-Ahx-((nat)Cu-NODAGA)-5-Ava-BBN(7-14)NH2] conjugate. MicroPET scintigraphy in PC-3/LNCaP tumor-bearing mice indicated that xenografted tumors were visible at 18h p.i. with collateral, background radiation also being observed in non-target tissue. Conclusions: DUPA-6-Ahx-((64)Cu-NODAGA)-5-Ava-BBN(7-14)NH2] targeting vector, as described herein, is the first example of a dual GRPr-/PSMA-targeting radioligand for molecular of imaging prostate tumors. Detailed in vitro studies and microPET molecular imaging investigations of [DUPA-6-Ahx-((64)Cu-NODAGA)-5-Ava-BBN(7-14)NH2 in tumor-bearing mice indicate that further studies are necessary to optimize uptake and retention of tracer in GRPr- and PSMA-positive tissues.
3. Tumor Uptake of Triazine Dendrimers Decorated with Four, Sixteen, and Sixty-Four PSMA-Targeted Ligands: Passive versus Active Tumor Targeting
Jongdoo Lim, Bing Guan, Kien Nham, Guiyang Hao, Xiankai Sun, Eric E Simanek Biomolecules. 2019 Aug 28;9(9):421. doi: 10.3390/biom9090421.
Various glutamate urea ligands have displayed high affinities to prostate specific membrane antigen (PSMA), which is highly overexpressed in prostate and other cancer sites. The multivalent versions of small PSMA-targeted molecules are known to be even more efficiently bound to the receptor. Here, we employ a well-known urea-based ligand, 2-[3-(1,3-dicarboxypropyl)-ureido] pentanedioic acid (DUPA) and triazine dendrimers in order to study the effect of molecular size on multivalent targeting in prostate cancer. The synthetic route starts with the preparation of a dichlorotriazine bearing DUPA in 67% overall yield over five steps. This dichlorotriazine reacts with G1, G3, and G5 triazine dendrimers bearing a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) group for 64Cu-labeling at the core to afford poly(monochlorotriazine) intermediates. Addition of 4-aminomethylpiperidine (4-AMP) and the following deprotection produce the target compounds, G1-(DUPA)4, G3-(DUPA)16, and G5-(DUPA)64. These targets include 4/16/64 DUPA groups on the surface and a DOTA group at the core, respectively. In vitro cell assay using PC3-PIP (PSMA positive) and PC3-FLU (PSMA negative) cells reveals that G1-(DUPA)4 has the highest PC3-PIP to PC3-FLU uptake ratio (10-fold) through the PSMA-mediated specific uptake. While G5-(DUPA)64 displayed approximately 12 times higher binding affinity (IC50 23.6 nM) to PC3-PIP cells than G1-(DUPA)4 (IC50 282.3 nM) as evaluated in a competitive binding assay, the G5 dendrimer also showed high non-specific binding to PC3-FLU cells. In vivo uptake of the 64Cu-labeled dendrimers was also evaluated in severe combined inmmunodeficient (SCID) mice bearing PC3-PIP and PC3-FLU xenografts on each shoulder, respectively. Interestingly, quantitative imaging analysis of positron emission tomograph (PET) displayed the lowest tumor uptake in PC3-PIP cells for the midsize dendrimer G3-(DUPA)16 (19.4 kDa) (0.66 ± 0.15%ID/g at 1 h. p.i., 0.64 ± 0.11%ID/g at 4 h. p.i., and 0.67 ± 0.08%ID/g at 24 h. p.i.). Through the specific binding of G1-(DUPA)4 to PSMA, the smallest dendrimer (5.1 kDa) demonstrated the highest PC3-PIP to muscle and PC3-PIP to PC3-FLU uptake ratios (17.7 ± 5.5 and 6.7 ± 3.0 at 4 h p.i., respectively). In addition, the enhanced permeability and retention (EPR) effect appeared to be an overwhelming factor for tumor uptake of the largest dendrimer G5-(DUPA)64 as the uptake was at a similar level irrelevant to the PSMA expression.
Online Inquiry
Verification code
Inquiry Basket