GenBank CR050980
Need Assistance?
  • US & Canada:
    +
  • UK: +

GenBank CR050980

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Fmoc-Amino Acids
Catalog number
BAT-005323
CAS number
719892-61-2
Molecular Formula
C40H38N2O4
Molecular Weight
610.7
IUPAC Name
(2S)-2-(9H-fluoren-9-ylmethoxycarbonylamino)-6-(tritylamino)hexanoic acid
Purity
≥95%
InChI
InChI=1S/C40H38N2O4/c43-38(44)37(42-39(45)46-28-36-34-24-12-10-22-32(34)33-23-11-13-25-35(33)36)26-14-15-27-41-40(29-16-4-1-5-17-29,30-18-6-2-7-19-30)31-20-8-3-9-21-31/h1-13,16-25,36-37,41H,14-15,26-28H2,(H,42,45)(H,43,44)/t37-/m0/s1
InChI Key
CEOOTQDKDICVJW-QNGWXLTQSA-N
Canonical SMILES
C1=CC=C(C=C1)C(C2=CC=CC=C2)(C3=CC=CC=C3)NCCCCC(C(=O)O)NC(=O)OCC4C5=CC=CC=C5C6=CC=CC=C46
1. Synthesis of the very acid-sensitive Fmoc-Cys(Mmt)-OH and its application in solid-phase peptide synthesis
K Barlos, D Gatos, O Hatzi, N Koch, S Koutsogianni Int J Pept Protein Res. 1996 Mar;47(3):148-53. doi: 10.1111/j.1399-3011.1996.tb01338.x.
S-4-methoxytrityl cysteine was synthesized and converted into the corresponding Fmoc-Cys(Mmt)-OH by its reaction with Fmoc-OSu. As compared to the corresponding Fmoc-Cys(Trt)-OH, the S-Mmt-function was found to be considerably more acid labile. Quantitative S-Mmt-removal occurs selectively in the presence of groups of the tert butyl type and S-Trt by treatment with 0.5-1.0% TFA. The new derivative was successfully utilized in the SPPS of Tyr1-somatostatin on 2-chlorotrityl resin. In this synthesis groups of the Trt-type were exclusively used for amino acid side-chain protection. Quantitative cleavage from the resin and complete deprotection was performed by treatment with 3% TFA in DCM-TES (95:5) for 30 min at RT. We observed no reduction of tryptophan under these conditions.
2. Tumor Uptake of Triazine Dendrimers Decorated with Four, Sixteen, and Sixty-Four PSMA-Targeted Ligands: Passive versus Active Tumor Targeting
Jongdoo Lim, Bing Guan, Kien Nham, Guiyang Hao, Xiankai Sun, Eric E Simanek Biomolecules. 2019 Aug 28;9(9):421. doi: 10.3390/biom9090421.
Various glutamate urea ligands have displayed high affinities to prostate specific membrane antigen (PSMA), which is highly overexpressed in prostate and other cancer sites. The multivalent versions of small PSMA-targeted molecules are known to be even more efficiently bound to the receptor. Here, we employ a well-known urea-based ligand, 2-[3-(1,3-dicarboxypropyl)-ureido] pentanedioic acid (DUPA) and triazine dendrimers in order to study the effect of molecular size on multivalent targeting in prostate cancer. The synthetic route starts with the preparation of a dichlorotriazine bearing DUPA in 67% overall yield over five steps. This dichlorotriazine reacts with G1, G3, and G5 triazine dendrimers bearing a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) group for 64Cu-labeling at the core to afford poly(monochlorotriazine) intermediates. Addition of 4-aminomethylpiperidine (4-AMP) and the following deprotection produce the target compounds, G1-(DUPA)4, G3-(DUPA)16, and G5-(DUPA)64. These targets include 4/16/64 DUPA groups on the surface and a DOTA group at the core, respectively. In vitro cell assay using PC3-PIP (PSMA positive) and PC3-FLU (PSMA negative) cells reveals that G1-(DUPA)4 has the highest PC3-PIP to PC3-FLU uptake ratio (10-fold) through the PSMA-mediated specific uptake. While G5-(DUPA)64 displayed approximately 12 times higher binding affinity (IC50 23.6 nM) to PC3-PIP cells than G1-(DUPA)4 (IC50 282.3 nM) as evaluated in a competitive binding assay, the G5 dendrimer also showed high non-specific binding to PC3-FLU cells. In vivo uptake of the 64Cu-labeled dendrimers was also evaluated in severe combined inmmunodeficient (SCID) mice bearing PC3-PIP and PC3-FLU xenografts on each shoulder, respectively. Interestingly, quantitative imaging analysis of positron emission tomograph (PET) displayed the lowest tumor uptake in PC3-PIP cells for the midsize dendrimer G3-(DUPA)16 (19.4 kDa) (0.66 ± 0.15%ID/g at 1 h. p.i., 0.64 ± 0.11%ID/g at 4 h. p.i., and 0.67 ± 0.08%ID/g at 24 h. p.i.). Through the specific binding of G1-(DUPA)4 to PSMA, the smallest dendrimer (5.1 kDa) demonstrated the highest PC3-PIP to muscle and PC3-PIP to PC3-FLU uptake ratios (17.7 ± 5.5 and 6.7 ± 3.0 at 4 h p.i., respectively). In addition, the enhanced permeability and retention (EPR) effect appeared to be an overwhelming factor for tumor uptake of the largest dendrimer G5-(DUPA)64 as the uptake was at a similar level irrelevant to the PSMA expression.
3. Synthesis and biological evaluation of copper-64 radiolabeled [DUPA-6-Ahx-(NODAGA)-5-Ava-BBN(7-14)NH2], a novel bivalent targeting vector having affinity for two distinct biomarkers (GRPr/PSMA) of prostate cancer
Rajendra Prasad Bandari, et al. Nucl Med Biol. 2014 Apr;41(4):355-63. doi: 10.1016/j.nucmedbio.2014.01.001. Epub 2014 Jan 10.
Gastrin-releasing peptide receptors (GRPr) and prostate-specific membrane antigen (PSMA) are two identifying biomarkers expressed in very high numbers on prostate cancer cells and could serve as a useful tool for molecular targeting and diagnosis of disease via positron-emission tomography (PET). The aim of this study was to produce the multipurpose, bivalent [DUPA-6-Ahx-((64)Cu-NODAGA)-5-Ava-BBN(7-14)NH2] radioligand for prostate cancer imaging, where DUPA = (2-[3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid), a small-molecule, PSMA-targeting probe, 6Ahx = 6-aminohexanoic acid, 5-Ava = 5-aminovaleric acid, NODAGA = [2-(4,7-biscarboxymethyl)-1,4,7-(triazonan-1-yl)pentanedioic acid] (a derivative of NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid)), and BBN(7-14)NH2 = bombesin, a GRPr-specific peptide targeting probe. Methods: The PSMA/GRPr dual targeting ligand precursor [DUPA-6-Ahx-K-5-Ava-BBN(7-14)NH2], was synthesized by solid-phase and manual peptide synthesis, after which NODAGA was added via manual conjugation to the ε-amine of lysine (K). The new bivalent GRPr/PSMA targeting vector was purified by reversed-phase high performance liquid chromatography (RP-HPLC), characterized by electrospray-ionization mass spectrometry (ESI-MS), and metallated with (64)CuCl2 and (nat)CuCl2. The receptor binding affinity was evaluated in human, prostate, PC-3 (GRPr-positive) and LNCaP (PSMA-positive) cells and the tumor-targeting efficacy determined in severe combined immunodeficient (SCID) and athymic nude mice bearing PC-3 and LNCaP tumors. Whole-body maximum intensity microPET/CT images of PC-3/LNCaP tumor-bearing mice were obtained 18 h post-injection (p.i.). Results: Competitive binding assays in PC-3 and LNCaP cells indicated high receptor binding affinity for the [DUPA-6-Ahx-((nat)Cu-NODAGA)-5-Ava-BBN(7-14)NH2] conjugate. MicroPET scintigraphy in PC-3/LNCaP tumor-bearing mice indicated that xenografted tumors were visible at 18h p.i. with collateral, background radiation also being observed in non-target tissue. Conclusions: DUPA-6-Ahx-((64)Cu-NODAGA)-5-Ava-BBN(7-14)NH2] targeting vector, as described herein, is the first example of a dual GRPr-/PSMA-targeting radioligand for molecular of imaging prostate tumors. Detailed in vitro studies and microPET molecular imaging investigations of [DUPA-6-Ahx-((64)Cu-NODAGA)-5-Ava-BBN(7-14)NH2 in tumor-bearing mice indicate that further studies are necessary to optimize uptake and retention of tracer in GRPr- and PSMA-positive tissues.
Online Inquiry
Verification code
Inquiry Basket