1. Contributions of Mass Spectrometry to the Identification of Low Molecular Weight Molecules Able to Reduce the Toxicity of Amyloid-β Peptide to Cell Cultures and Transgenic Mouse Models of Alzheimer's Disease
Raluca Ştefănescu, Gabriela Dumitriṭa Stanciu, Andrei Luca, Ioana Cezara Caba, Bogdan Ionel Tamba, Cosmin Teodor Mihai Molecules. 2019 Mar 24;24(6):1167. doi: 10.3390/molecules24061167.
Alzheimer's Disease affects approximately 33 million people worldwide and is characterized by progressive loss of memory at the cognitive level. The formation of toxic amyloid oligomers, extracellular amyloid plaques and amyloid angiopathy in brain by amyloid beta peptides are considered a part of the identified mechanism involved in disease pathogenesis. The optimal treatment approach leads toward finding a chemical compound able to form a noncovalent complex with the amyloid peptide thus blocking the process of amyloid aggregation. This direction gained an increasing interest lately, many studies demonstrating that mass spectrometry is a valuable method useful for the identification and characterization of such molecules able to interact with amyloid peptides. In the present review we aim to identify in the scientific literature low molecular weight chemical compounds for which there is mass spectrometric evidence of noncovalent complex formation with amyloid peptides and also there are toxicity reduction results which verify the effects of these compounds on amyloid beta toxicity towards cell cultures and transgenic mouse models developing Alzheimer's Disease.
2. L-O-(2-malonyl)tyrosine: a new phosphotyrosyl mimetic for the preparation of Src homology 2 domain inhibitory peptides
B Ye, M Akamatsu, S E Shoelson, G Wolf, S Giorgetti-Peraldi, X Yan, P P Roller, T R Burke Jr J Med Chem. 1995 Oct 13;38(21):4270-5. doi: 10.1021/jm00021a016.
Inhibition of Src homology 2 (SH2) domain-binding interactions affords one potential means of modulating protein-tyrosine kinase-dependent signaling. Small phosphotyrosyl (pTyr)-containing peptides are able to bind to SH2 domains and compete with larger pTyr peptides or native pTyr-containing protein ligands. Such pTyr-containing peptides are limited in their utility as SH2 domain inhibitors in vivo due to their hydrolytic lability to protein-tyrosine phosphatases (PTPs) and the poor cellular penetration of the ionized phosphate moiety. An important aspect of SH2 domain inhibitor design is the creation of pTyr mimetics which are stable to PTPs and have reasonable bioavailability. To date, most PTP-resistant pTyr mimetics which bind to SH2 domains are phosphonates such as (phosphonomethyl)phenylalanine (Pmp, 2), [(monofluorophosphono)methyl]phenylalanine (FPmp, 3) or [(difluorophosphono)methyl]-phenylalanine (F2Pmp, 4). Herein we report the incorporation of a new non-phosphorus-containing pTyr mimetic, L-O-(2-malonyl)tyrosine (L-OMT, 5), into SH2 domain inhibitory peptides using the protected analogue L-N alpha-Fmoc-O'-(O",O"-di-tert-butyl-2-malonyl)tyrosine (6) and solid-phase peptide synthesis techniques. Five OMT-containing peptides were prepared against the following SH2 domains: the PI-3 kinase C-terminal p85 SH2 domain (Ac-D-(L-OMT)-V-P-M-L-amide, 10, IC50 = 14.2 microM), the Src SH2 domain (Ac-Q-(L-OMT)-E-E-I-P-amide, 11, IC50 = 25 microM, and Ac-Q-(L-OMT)-(L-OMT)-E-I-P-amide, 14, IC50 = 23 microM), the Grb2 SH2 domain (Ac-N-(L-OMT)-V-N-I-E-amide, 12, IC50 = 120 microM), and the N-terminal SH-PTP2 SH2 domain (Ac-L-N-(L-OMT)-I-D-L-D-L-V-amide, 13, IC50 = 22.0 microM). These results show that peptides 10, 11, 13, and 14 have reasonable affinity for their respective SH2 domains, with the IC50 value for the SH-PTP2 SH2 domain-directed peptide 13 being equivalent to that previously observed for the corresponding F2Pmp-containing peptide. OMT may afford a new structural starting point for the development of novel and useful SH2 domain inhibitors.
3. Synthesis, experimental and in silico studies of N-fluorenylmethoxycarbonyl-O-tert-butyl-N-methyltyrosine, coupled with CSD data: a survey of interactions in the crystal structures of Fmoc-amino acids
Joanna Bojarska, Milan Remko, Izabela D Madura, Krzysztof Kaczmarek, Janusz Zabrocki, Wojciech M Wolf Acta Crystallogr C Struct Chem. 2020 Apr 1;76(Pt 4):328-345. doi: 10.1107/S2053229620003009. Epub 2020 Mar 10.
Recently, fluorenylmethoxycarbonyl (Fmoc) amino acids (e.g. Fmoc-tyrosine or Fmoc-phenylalanine) have attracted growing interest in biomedical research and industry, with special emphasis directed towards the design and development of novel effective hydrogelators, biomaterials or therapeutics. With this in mind, a systematic knowledge of the structural and supramolecular features in recognition of those properties is essential. This work is the first comprehensive summary of noncovalent interactions combined with a library of supramolecular synthon patterns in all crystal structures of amino acids with the Fmoc moiety reported so far. Moreover, a new Fmoc-protected amino acid, namely, 2-{[(9H-fluoren-9-ylmethoxy)carbonyl](methyl)amino}-3-{4-[(2-hydroxypropan-2-yl)oxy]phenyl}propanoic acid or N-fluorenylmethoxycarbonyl-O-tert-butyl-N-methyltyrosine, Fmoc-N-Me-Tyr(t-Bu)-OH, C29H31NO5, was successfully synthesized and the structure of its unsolvated form was determined by single-crystal X-ray diffraction. The structural, conformational and energy landscape was investigated in detail by combined experimental and in silico approaches, and further compared to N-Fmoc-phenylalanine [Draper et al. (2015). CrystEngComm, 42, 8047-8057]. Geometries were optimized by the density functional theory (DFT) method either in vacuo or in solutio. The polarizable conductor calculation model was exploited for the evaluation of the hydration effect. Hirshfeld surface analysis revealed that H...H, C...H/H...C and O...H/H...O interactions constitute the major contributions to the total Hirshfeld surface area in all the investigated systems. The molecular electrostatic potentials mapped over the surfaces identified the electrostatic complementarities in the crystal packing. The prediction of weak hydrogen-bonded patterns via Full Interaction Maps was computed. Supramolecular motifs formed via C-H...O, C-H...π, (fluorenyl)C-H...Cl(I), C-Br...π(fluorenyl) and C-I...π(fluorenyl) interactions are observed. Basic synthons, in combination with the Long-Range Synthon Aufbau Modules, further supported by energy-framework calculations, are discussed. Furthermore, the relevance of Fmoc-based supramolecular hydrogen-bonding patterns in biocomplexes are emphasized, for the first time.