Fmoc-O-tert-butyl-D-tyrosine
Need Assistance?
  • US & Canada:
    +
  • UK: +

Fmoc-O-tert-butyl-D-tyrosine

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Fmoc-Amino Acids
Catalog number
BAT-003812
CAS number
118488-18-9
Molecular Formula
C28H29NO5
Molecular Weight
459.50
Fmoc-O-tert-butyl-D-tyrosine
IUPAC Name
(2R)-2-(9H-fluoren-9-ylmethoxycarbonylamino)-3-[4-[(2-methylpropan-2-yl)oxy]phenyl]propanoic acid
Synonyms
Fmoc-D-Tyr(tBu)-OH; Fmoc-O-tert-butyl-D-tyrosine; Nα-Fmoc-O-tert-butyl-D-tyrosine; (2R)-2-(9H-fluoren-9-ylmethoxycarbonylamino)-3-[4-[(2-methylpropan-2-yl)oxy]phenyl]propanoic acid; (R)-2-((((9H-Fluoren-9-yl)methoxy)carbonyl)amino)-3-(4-(tert-butoxy)phenyl)propanoic acid
Appearance
White powder
Purity
≥ 99.5% (Chiral HPLC)
Density
1.218±0.06 g/cm3
Melting Point
145-155 °C
Boiling Point
658.2±55.0 °C
Storage
Store at 2-8 °C
InChI
InChI=1S/C28H29NO5/c1-28(2,3)34-19-14-12-18(13-15-19)16-25(26(30)31)29-27(32)33-17-24-22-10-6-4-8-20(22)21-9-5-7-11-23(21)24/h4-15,24-25H,16-17H2,1-3H3,(H,29,32)(H,30,31)/t25-/m1/s1
InChI Key
JAUKCFULLJFBFN-RUZDIDTESA-N
Canonical SMILES
CC(C)(C)OC1=CC=C(C=C1)CC(C(=O)O)NC(=O)OCC2C3=CC=CC=C3C4=CC=CC=C24
1. L-O-(2-malonyl)tyrosine: a new phosphotyrosyl mimetic for the preparation of Src homology 2 domain inhibitory peptides
B Ye, M Akamatsu, S E Shoelson, G Wolf, S Giorgetti-Peraldi, X Yan, P P Roller, T R Burke Jr J Med Chem. 1995 Oct 13;38(21):4270-5. doi: 10.1021/jm00021a016.
Inhibition of Src homology 2 (SH2) domain-binding interactions affords one potential means of modulating protein-tyrosine kinase-dependent signaling. Small phosphotyrosyl (pTyr)-containing peptides are able to bind to SH2 domains and compete with larger pTyr peptides or native pTyr-containing protein ligands. Such pTyr-containing peptides are limited in their utility as SH2 domain inhibitors in vivo due to their hydrolytic lability to protein-tyrosine phosphatases (PTPs) and the poor cellular penetration of the ionized phosphate moiety. An important aspect of SH2 domain inhibitor design is the creation of pTyr mimetics which are stable to PTPs and have reasonable bioavailability. To date, most PTP-resistant pTyr mimetics which bind to SH2 domains are phosphonates such as (phosphonomethyl)phenylalanine (Pmp, 2), [(monofluorophosphono)methyl]phenylalanine (FPmp, 3) or [(difluorophosphono)methyl]-phenylalanine (F2Pmp, 4). Herein we report the incorporation of a new non-phosphorus-containing pTyr mimetic, L-O-(2-malonyl)tyrosine (L-OMT, 5), into SH2 domain inhibitory peptides using the protected analogue L-N alpha-Fmoc-O'-(O",O"-di-tert-butyl-2-malonyl)tyrosine (6) and solid-phase peptide synthesis techniques. Five OMT-containing peptides were prepared against the following SH2 domains: the PI-3 kinase C-terminal p85 SH2 domain (Ac-D-(L-OMT)-V-P-M-L-amide, 10, IC50 = 14.2 microM), the Src SH2 domain (Ac-Q-(L-OMT)-E-E-I-P-amide, 11, IC50 = 25 microM, and Ac-Q-(L-OMT)-(L-OMT)-E-I-P-amide, 14, IC50 = 23 microM), the Grb2 SH2 domain (Ac-N-(L-OMT)-V-N-I-E-amide, 12, IC50 = 120 microM), and the N-terminal SH-PTP2 SH2 domain (Ac-L-N-(L-OMT)-I-D-L-D-L-V-amide, 13, IC50 = 22.0 microM). These results show that peptides 10, 11, 13, and 14 have reasonable affinity for their respective SH2 domains, with the IC50 value for the SH-PTP2 SH2 domain-directed peptide 13 being equivalent to that previously observed for the corresponding F2Pmp-containing peptide. OMT may afford a new structural starting point for the development of novel and useful SH2 domain inhibitors.
2. Designed amino acid ATRP initiators for the synthesis of biohybrid materials
Rebecca M Broyer, Grace M Quaker, Heather D Maynard J Am Chem Soc. 2008 Jan 23;130(3):1041-7. doi: 10.1021/ja0772546.
A synthetic strategy to prepare peptide-polymer conjugates with precise sites of attachment is described. Amino acids modified with atom transfer radical polymerization (ATRP) initiators for the polymerization of styrenes and methacrylates were prepared. Fmoc-4-(1-chloroethyl)-phenylalanine (5) was synthesized in four steps from Fmoc-tyrosine. HATU-mediated amidation with glycine-OMe resulted in dipeptide (6). The initiator was effective for Cu(I)/bipyridine mediated bulk polymerization of styrene. Kinetic studies indicated a controlled polymerization, with high conversion (97%), and a polydispersity index (PDI) of 1.25. Fmoc-O-(2-bromoisobutyryl)-serine tert-butyl ester (10) was synthesized from Fmoc-Ser(OTrt)-OH in three steps. This initiator was employed in the ATRP of 2-hydroxyethyl methacrylate (HEMA), and kinetic studies indicated a controlled polymerization. Different monomer to initiator ratios resulted in poly(HEMA) of different molecular weights and narrow PDIs (1.14-1.25). Conversions were between 70 and 99%. HEMA modified with N-acetyl-D-glucosamine (GlcNAc) was also polymerized to 84% conversion and the resulting PDI was 1.19. The t-butyl ester protecting group of 10 was removed, and the resulting amino acid (11) was incorporated into VM(11)VVQTK by standard solid-phase peptide synthesis. Polymerization resulted in the glycopolymer-peptide conjugate in 93% conversion and a PDI of 1.14.
3. Synthesis and opioid activity of [D-Pro10]dynorphin A-(1-11) analogues with N-terminal alkyl substitution
H Choi, T F Murray, G E DeLander, W K Schmidt, J V Aldrich J Med Chem. 1997 Aug 15;40(17):2733-9. doi: 10.1021/jm960747t.
Several N-terminal di- and monoalkylated derivatives of [D-Pro10]dynorphin A-(1-11) were synthesized in order to explore the structure-activity relationships for antagonist vs agonist activity at kappa-opioid receptors. N,N-Dialkylated and N-monoalkylated (alkyl = allyl, benzyl, and cyclopropylmethyl (CPM) tyrosine derivatives were prepared from tyrosine tert-butyl ester and the corresponding alkyl halides. [D-Pro10]Dyn A-(2-11) was prepared by solid phase synthesis using Fmoc-protected amino acids, and the tyrosine derivatives were coupled to the peptide with BOP ((benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate). Both the degree of substitution and the identity of the alkyl group affected kappa-receptor affinity, selectivity, and efficacy. All of the N-monoalkylated derivatives exhibited much higher affinity (Ki < 0.05 nM) for kappa receptors in the guinea pig cerebellum and greatly enhanced kappa-receptor selectivity (Ki ratio (kappa/mu) > 200) compared to the N,N-dialkyl [D-Pro10]Dyn A-(1-11) analogues, although one disubstituted analogue, N,N-diCPM[D-Pro10]Dyn A-(1-11), retained high affinity (Ki = 0.19 nM) for kappa receptors. Thus the introduction of the second alkyl group at the N-terminus lowered kappa-receptor affinity and selectivity. The N-allyl and N-CPM analogues were moderately potent agonists in the guinea pig ileum (GPI) assay, while the N-benzyl derivative was a weak agonist in this assay. In vivo in the phenylquinone abdominal stretching assay the N-CPM analogue exhibited potent antinociceptive activity (ED50 = 1.1 micrograms/mouse), while N-allyl[D-Pro10]Dyn A-(1-11) exhibited weak antinociceptive activity (ED50 = 27 micrograms/mouse). For the N,N-dialkyl derivatives the identity of the N-terminal alkyl group affected the efficacy observed in the smooth muscle assays. The N,N-diCPM analogue exhibited negligible agonist activity, and N,N-diallyl[D-Pro10]Dyn A-(1-11) showed weak antagonist activity against Dyn A-(1-13)NH2 in the GPI. In contrast, the N,N-dibenzyl compound showed appreciable opioid agonist activity in this assay. In vivo the N,N-diallyl analogue exhibited weak antinociceptive activity (ED50 = 26 micrograms/mouse in the phenylquinone abdominal stretching assay). The N-monoalkylated peptides are among the most kappa-selective opioid peptides reported to date, showing comparable or greater selectivity and higher affinity than the kappa-selective non-peptide agonists U-50,488 and U-69,593. The N,N-diCPM and N,N-diallyl peptides are lead compounds in the development of peptide-based kappa-receptor antagonists.
Online Inquiry
Verification code
Inquiry Basket