Fmoc-Phe(4-Boc2-guanidino)-OH
Need Assistance?
  • US & Canada:
    +
  • UK: +

Fmoc-Phe(4-Boc2-guanidino)-OH

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
BOC-Amino Acids
Catalog number
BAT-008890
CAS number
187283-25-6
Molecular Formula
C35H40N4O8
Molecular Weight
644.7
Fmoc-Phe(4-Boc2-guanidino)-OH
IUPAC Name
(2S)-3-[4-[bis[(2-methylpropan-2-yl)oxycarbonylamino]methylideneamino]phenyl]-2-(9H-fluoren-9-ylmethoxycarbonylamino)propanoic acid
Synonyms
Fmoc-4-(N,N'-di-Boc-guanidino)-L-phenylalanine; Fmoc-Phe(4-guanidino-Boc2)
Density
1.26 g/cm3
InChI
InChI=1S/C35H40N4O8/c1-34(2,3)46-32(43)38-30(39-33(44)47-35(4,5)6)36-22-17-15-21(16-18-22)19-28(29(40)41)37-31(42)45-20-27-25-13-9-7-11-23(25)24-12-8-10-14-26(24)27/h7-18,27-28H,19-20H2,1-6H3,(H,37,42)(H,40,41)(H2,36,38,39,43,44)/t28-/m0/s1
InChI Key
CIEGZABLYKOZLG-NDEPHWFRSA-N
Canonical SMILES
CC(C)(C)OC(=O)NC(=NC1=CC=C(C=C1)CC(C(=O)O)NC(=O)OCC2C3=CC=CC=C3C4=CC=CC=C24)NC(=O)OC(C)(C)C
1. Stable Formulations of Peptide-Based Nanogels
Elisabetta Rosa, Carlo Diaferia, Enrico Gallo, Giancarlo Morelli, Antonella Accardo Molecules. 2020 Jul 29;25(15):3455. doi: 10.3390/molecules25153455.
Recently, nanogels have been identified as innovative formulations for enlarging the application of hydrogels (HGs) in the area of drug delivery or in diagnostic imaging. Nanogels are HGs-based aggregates with sizes in the range of nanometers and formulated in order to obtain injectable preparations. Regardless of the advantages offered by peptides in a hydrogel preparation, until now, only a few examples of peptide-based nanogels (PBNs) have been developed. Here, we describe the preparation of stable PBNs based on Fmoc-Phe-Phe-OH using three different methods, namely water/oil emulsion (W/O), top-down, and nanogelling in water. The effect of the hydrophilic-lipophilic balance (HLB) in the formulation was also evaluated in terms of size and stability. The resulting nanogels were found to encapsulate the anticancer drug doxorubicin, chosen as the model drug, with a drug loading comparable with those of the liposomes.
2. Exploiting Minimalistic Backbone Engineered γ-Phenylalanine for the Formation of Supramolecular Co-Polymer
Rajkumar Misra, et al. Macromol Rapid Commun. 2022 Oct;43(19):e2200223. doi: 10.1002/marc.202200223. Epub 2022 Aug 12.
Ordered supramolecular hydrogels assembled by modified aromatic amino acids often exhibit low mechanical rigidity. Aiming to stabilize the hydrogel and understand the impact of conformational freedom and hydrophobicity on the self-assembly process, two building blocks based on 9-fluorenyl-methoxycarbonyl-phenylalanine (Fmoc-Phe) gelator which contain two extra methylene units in the backbone, generating Fmoc-γPhe and Fmoc-(3-hydroxy)-γPhe are designed. Fmoc-γPhe spontaneously assembled in aqueous media forming a hydrogel with exceptional mechanical and thermal stability. Moreover, Fmoc-(3-hydroxy)-γPhe, with an extra backbone hydroxyl group decreasing its hydrophobicity while maintaining some molecular flexibility, self-assembled into a transient fibrillar hydrogel, that later formed microcrystalline aggregates through a phase transition. Molecular dynamics simulations and single crystal X-ray analyses reveal the mechanism underlying the two residues' distinct self-assembly behaviors. Finally, Fmoc-γPhe and Fmoc-(3-OH)-γPhe co-assembly to form a supramolecular hydrogel with notable mechanical properties are demonstrated. It has been believed that the understanding of the structure-assembly relationship will enable the design of new functional amino acid-based hydrogels.
3. Fullerene-based inhibitors of HIV-1 protease
T Amanda Strom, Serdar Durdagi, Suha Salih Ersoz, Ramin Ekhteiari Salmas, Claudiu T Supuran, Andrew R Barron J Pept Sci. 2015 Dec;21(12):862-70. doi: 10.1002/psc.2828.
A series of Fmoc-Phe(4-aza-C60)-OH of fullerene amino acid derived peptides have been prepared by solid phase peptide synthesis, in which the terminal amino acid, Phe(4-aza-C60)-OH, is derived from the dipolar addition to C60 of the Fmoc-Nα-protected azido amino acids derived from phenylalanine: Fmoc-Phe(4-aza-C60)-Lys3-OH (1), Fmoc-Phe(4-aza-C60)-Pro-Hyp-Lys-OH (2), and Fmoc-Phe(4-aza-C60)-Hyp-Hyp-Lys-OH (3). The inhibition constant of our fullerene aspartic protease PRIs utilized FRET-based assay to evaluate the enzyme kinetics of HIV-1 PR at various concentrations of inhibitors. Simulation of the docking of the peptide Fmoc-Phe-Pro-Hyp-Lys-OH overestimated the inhibition, while the amino acid PRIs were well estimated. The experimental results show that C60-based amino acids are a good base structure in the design of protease inhibitors and that their inhibition can be improved upon by the addition of designer peptide sequences.
Online Inquiry
Verification code
Inquiry Basket