G3-C12
Need Assistance?
  • US & Canada:
    +
  • UK: +

G3-C12

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

G3-C12 is a peptide that can bind to Galectin-3 and has anti-cancer activity.

Category
Others
Catalog number
BAT-009125
CAS number
848301-94-0
Molecular Formula
C74H115N23O23S2
Molecular Weight
1759
IUPAC Name
(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-1-[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-1-[2-[[(2R)-2-[[(2S)-1-[(2S,3R)-2-[[(2S)-4-amino-2-[[(2S)-2-aminopropanoyl]amino]-4-oxobutanoyl]amino]-3-hydroxybutanoyl]pyrrolidine-2-carbonyl]amino]-3-sulfanylpropanoyl]amino]acetyl]pyrrolidine-2-carbonyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-3-hydroxybutanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-3-carboxypropanoyl]amino]-3-sulfanylpropanoyl]pyrrolidine-2-carbonyl]amino]-3-methylbutanoyl]amino]hexanoyl]amino]-5-(diaminomethylideneamino)pentanoic acid
Appearance
Solid Powder
Purity
≥97% by HPLC
Density
1.58±0.1 g/cm3(Predicted)
Sequence
ANTPCGPYTHDCPVKR
Storage
Store at -20°C
Solubility
Soluble in DMSO
InChI
InChI=1S/C74H115N23O23S2/c1-35(2)56(69(115)84-42(12-6-7-21-75)61(107)85-43(73(119)120)13-8-22-81-74(78)79)92-68(114)52-16-10-24-96(52)71(117)49(33-122)91-63(109)47(29-55(103)104)87-62(108)45(27-40-30-80-34-83-40)89-70(116)57(37(4)98)93-64(110)44(26-39-17-19-41(100)20-18-39)88-66(112)50-14-9-23-95(50)54(102)31-82-60(106)48(32-121)90-67(113)51-15-11-25-97(51)72(118)58(38(5)99)94-65(111)46(28-53(77)101)86-59(105)36(3)76/h17-20,30,34-38,42-52,56-58,98-100,121-122H,6-16,21-29,31-33,75-76H2,1-5H3,(H2,77,101)(H,80,83)(H,82,106)(H,84,115)(H,85,107)(H,86,105)(H,87,108)(H,88,112)(H,89,116)(H,90,113)(H,91,109)(H,92,114)(H,93,110)(H,94,111)(H,103,104)(H,119,120)(H4,78,79,81)/t36-,37+,38+,42-,43-,44-,45-,46-,47-,48-,49-,50-,51-,52-,56-,57-,58-/m0/s1
InChI Key
RXFIUXGGWIBQLE-UCNRAYMSSA-N
Canonical SMILES
CC(C)C(C(=O)NC(CCCCN)C(=O)NC(CCCN=C(N)N)C(=O)O)NC(=O)C1CCCN1C(=O)C(CS)NC(=O)C(CC(=O)O)NC(=O)C(CC2=CN=CN2)NC(=O)C(C(C)O)NC(=O)C(CC3=CC=C(C=C3)O)NC(=O)C4CCCN4C(=O)CNC(=O)C(CS)NC(=O)C5CCCN5C(=O)C(C(C)O)NC(=O)C(CC(=O)N)NC(=O)C(C)N
1. G3-C12 Peptide Reverses Galectin-3 from Foe to Friend for Active Targeting Cancer Treatment
Wei Sun, Lian Li, Qingqing Yang, Wei Shan, Zhirong Zhang, Yuan Huang Mol Pharm. 2015 Nov 2;12(11):4124-36. doi: 10.1021/acs.molpharmaceut.5b00568. Epub 2015 Sep 29.
Galectin-3 is overexpressed by numerous carcinomas and is a potential target for active tumor treatments. On the other hand, galectin-3 also plays a key role in cancer progression and prevents cells from undergoing apoptosis, thereby offsetting the benefits of active targeting drugs. However, the relative contribution of the protective antiapoptotic effects of galectin-3 and the proapoptotic effects of galectin-3-targeted therapies has remained yet unrevealed. Here, we show that a galectin-3-binding peptide G3-C12 could reverse galectin-3 from foe to friend for active targeting delivery system. Results showed G3-C12 modified N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin conjugates (G3-C12-HPMA-Dox) could internalize into galectin-3 overexpressed PC-3 cells via a highly specific ligand-receptor pathway (2.2 times higher cellular internalization than HPMA-Dox). The internalized Dox stimulated the translocation of galectin-3 to the mitochondria to prevent from apoptosis. In turn, this caused G3-C12-HPMA-Dox to concentrate into the mitochondria after binding to galectin-3 intracellularly. Initially, mitochondrial galectin-3 weakened Dox-induced mitochondrial damage; however, as time progressed, G3-C12 active-mediation allowed increasing amounts of Dox to be delivered to the mitochondria, which eventually induced higher level of apoptosis than nontargeted copolymers. In addition, G3-C12 downregulates galectin-3 expression, 0.43 times lower than control cells, which could possibly be responsible for the suppressed cell migration. Thus, G3-C12 peptide exerts sequential targeting to both cell membrane and mitochondria via regulating galectin-3, and eventually reverses and overcomes the protective effects of galectin-3; therefore, it could be a promising agent for the treatment of galectin-3-overexpressing cancers.
2. Targeting prostate carcinoma by G3-C12 peptide conjugated N-(2-hydroxypropyl)methacrylamide copolymers
Yang Yang, Lian Li, Zhou Zhou, Qingqing Yang, Chong Liu, Yuan Huang Mol Pharm. 2014 Oct 6;11(10):3251-60. doi: 10.1021/mp500083u. Epub 2014 Jun 30.
Prostate carcinoma is the second leading cause of cancer-related deaths. Increased expression of membrane-bound galectin-3 by prostate carcinoma cell has been found to correlate with more poorly differentiated and increased metastatic potential. In the present study, different amount of galectin-3-binding peptide, G3-C12 (the sequence ANTPCGPYTHDCPVKR), was attached to N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers as targeting moiety. The results of qPCR and competitive binding test indicated that the expression level of galectin-3 in two metastatic prostate carcinoma cell lines (PC-3 and DU145 cells) could be significantly suppressed by the addition of G3-C12-modified HPMA copolymers (PG1 and PG2), demonstrating the high affinity of PG1 and PG2 to galectin-3. Due to the multivalent effects of moieties, the uptake of copolymers was remarkably enhanced with the increasing amount of conjugated G3-C12 peptide. A higher internalization of PG1 and PG2 occurred in PC-3 cells via caveolin- and clathrin-mediated endocytosis, whereas a clathrin-mediated uptake process was involved in DU145 cells. The in vivo biodistribution and pharmacokinetics of nonmodified ((131)I-pHPMA) and G3-C12-modified ((131)I-PG1 and (131)I-PG2) copolymers were estimated on a well-established mice model bearing PC-3 xenografts by (131)I-SPECT-imaging. Higher tumor accumulation of (131)I-PG1 (1.60 ± 0.08% ID/g, p < 0.05) and (131)I-PG2 (1.54 ± 0.06% ID/g, p < 0.05) was observed compared with (131)I-pHPMA (1.19 ± 0.04% ID/g) at 2 h post-intravenous injection. Although the amount of conjugated G3-C12 peptide performed a remarkable in vitro effect on the affinity and internalization of HPMA copolymers to the galectin-3 overexpressed prostate carcinoma cells, the molecular weight and ligand modification all play important roles on their in vivo tumor accumulation.
3. Development of (G3-C12)-mediated camptothecin polymeric prodrug targeting to Galectin-3 receptor against androgen-independent prostate cancer
Xia Yuan, Li Liu, Wei Wang, Ya-Ru Gao, Die Zhang, Ting-Ting Jia, Hai-Rong Zeng, Gang Pan, Yi Yuan Int J Pharm. 2020 Apr 30;580:119123. doi: 10.1016/j.ijpharm.2020.119123. Epub 2020 Feb 5.
The development of small molecule anticancer drugs, with low water solubility and high toxicity, into polymeric prodrugs has developed into a promising strategy in clinical application. In this study, we synthesized a novel G3-C12-mediated esterase-sensitive tumor-targeting polymeric prodrug of camptothecin (CPT), P(OEGMA-co-CPT-co-G3-C12), and explored its anticancer activity against androgen-independent prostate cancer in vitro and in vivo. Compared to free CPT, the multifunctional polymeric prodrug demonstrated improved water solubility and stability, higher intracellular uptake, and enhanced cytotoxicity in DU145 cells in vitro. Furthermore, it displayed an improved accumulation in the tumor and an enhanced anticancer activity in vivo. Hence, P(OEGMA-co-CPT-co-G3-C12) could be a promising drug in the treatment of androgen-independent prostate cancer.
Online Inquiry
Verification code
Inquiry Basket