Glu-Gly-OH
Need Assistance?
  • US & Canada:
    +
  • UK: +

Glu-Gly-OH

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Others
Catalog number
BAT-005000
CAS number
13716-89-7
Molecular Formula
C7H12N2O5
Molecular Weight
204.18
Glu-Gly-OH
IUPAC Name
(4S)-4-amino-5-(carboxymethylamino)-5-oxopentanoic acid
Synonyms
L-α-Glutamyl-glycine
Appearance
White to off-white powder
Purity
≥ 99%
Density
1.424g/cm3
Boiling Point
589ºC at 760mmHg
Storage
Store at 2-8 °C
InChI
InChI=1S/C7H12N2O5/c8-4(1-2-5(10)11)7(14)9-3-6(12)13/h4H,1-3,8H2,(H,9,14)(H,10,11)(H,12,13)/t4-/m0/s1
InChI Key
LSPKYLAFTPBWIL-BYPYZUCNSA-N
Canonical SMILES
C(CC(=O)O)C(C(=O)NCC(=O)O)N
1. Peptide segment coupling in aqueous medium: silver ion activation of the thiolcarboxyl group
J Blake Int J Pept Protein Res. 1981 Feb;17(2):273-4. doi: 10.1111/j.1399-3011.1981.tb01992.x.
The use of the thiolcarboxyl function for the assemblage of deblocked peptide segments in aqueous medium has been investigated. The C-terminal thiolcarboxyl peptide Ac-Tyr-Arg-Arg-Glu-Arg-Gly-SH (2a) has been synthesized by the solid-phase method. The silver compound of peptide 2a was coupled to H-Phe-Ala-Glu-Gly-OH in 50% aqueous dimethylformamide to give a 40% yield of Ac-Tyr-Arg-Arg-Glu-Arg-Gly-Phe-Ala-Glu-Gly-OH.
2. Characterization of alpha- and gamma-glutamyl dipeptides by negative ion collision-induced dissociation
Alex G Harrison J Mass Spectrom. 2004 Feb;39(2):136-44. doi: 10.1002/jms.515.
The low-energy CID mass spectra of the [M-H](-) ions of a variety of dipeptides containing glutamic acid have been obtained using cone-voltage collisional activation. Dipeptides with the gamma-linkage, H-Glu(Xxx-OH)-OH, are readily distinguished from those with the alpha-linkage, H-Glu-Xxx-OH, by the much more prominent elimination of H-Xxx-OH from the [M-H](-) ions of the former isomers, resulting in formation of m/z 128, presumably deprotonated pyroglutamic acid. Dipeptides with the reverse linkage, H-Xxx-Glu-OH, show distinctive fragmentation reactions of the [M-H](-) ions including enhanced elimination of CO(2) and formation of deprotonated glutamic acid. Exchange of the labile hydrogens for deuterium has shown that there is considerable interchange of C-bonded hydrogens with labile (N- and O-bonded) hydrogens prior to most fragmentation reactions. All dipeptides show loss of H(2)O from [M-H](-). MS(3) studies show that the [M-H-H(2)O](-) ion derived from H-Glu-Gly-OH has the structure of deprotonated pyroglutamylglycine while the [M-H-H(2)O](-) ions derived from H-Glu(Gly-OH)-OH and H-Gly-Glu-OH show a different fragmentation behaviour indicating distinct structures for the fragment ions.
3. Fragmentation reactions of protonated peptides containing glutamine or glutamic acid
Alex G Harrison J Mass Spectrom. 2003 Feb;38(2):174-87. doi: 10.1002/jms.427.
A variety of protonated dipeptides and tripeptides containing glutamic acid or glutamine were prepared by electrospray ionization or by fast atom bombardment ionization and their fragmentation pathways elucidated using metastable ion studies, energy-resolved mass spectrometry and triple-stage mass spectrometry (MS(3)) experiments. Additional mechanistic information was obtained by exchanging the labile hydrogens for deuterium. Protonated H-Gln-Gly-OH fragments by loss of NH(3) and loss of H(2)O in metastable ion fragmentation; under collision-induced dissociation (CID) conditions loss of H-Gly-OH + CO from the [MH - NH(3)](+) ion forms the base peak C(4)H(6)NO(+) (m/z 84). Protonated dipeptides with an alpha-linkage, H-Glu-Xxx-OH, are characterized by elimination of H(2)O and by elimination of H-Xxx-OH plus CO to form the glutamic acid immonium ion of m/z 102. By contrast, protonated dipeptides with a gamma-linkage, H-Glu(Xxx-OH)-OH, do not show elimination of H(2)O or formation of m/z 102 but rather show elimination of NH(3), particularly in metastable ion fragmentation, and elimination of H-Xxx-OH to form m/z 130. Both the alpha- and gamma-dipeptides show formation of [H-Xxx-OH]H(+), with this reaction channel increasing in importance as the proton affinity (PA) of H-Xxx-OH increases. The characteristic loss of H(2)O and formation of m/z 102 are observed for the protonated alpha-tripeptide H-Glu-Gly-Phe-OH whereas the protonated gamma-tripeptide H-Glu(Gly-Gly-OH)-OH shows loss of NH(3) and formation of m/z 130 as observed for dipeptides with the gamma-linkage. Both tripeptides show abundant formation of the y(2)'' ion under CID conditions, presumably because a stable anhydride neutral structure can be formed. Under metastable ion conditions protonated dipeptides of structure H-Xxx-Glu-OH show abundant elimination of H(2)O whereas those of structure H-Xxx-Gln-OH show abundant elimination of NH(3). The importance of these reaction channels is much reduced under CID conditions, the major fragmentation mode being cleavage of the amide bond to form either the a(1) ion or the y(1)'' ion. Particularly when Xxx = Gly, under CID conditions the initial loss of NH(3) from the glutamine containing dipeptide is followed by elimination of a second NH(3) while the initial loss of H(2)O from the glutamic acid dipeptide is followed by elimination of NH(3). Isotopic labelling shows that predominantly labile hydrogens are lost in both steps. Although both [H-Gly-Glu-Gly-OH]H(+) and [H-Gly-Gln-Gly-OH]H(+) fragment mainly to form b(2) and a(2) ions, the latter also shows elimination of NH(3) plus a glycine residue and formation of protonated glycinamide. Isotopic labelling shows extensive mixing of labile and carbon-bonded hydrogens in the formation of protonated glycinamide.
Online Inquiry
Verification code
Inquiry Basket