(Gly14)-Humanin (human)
Need Assistance?
  • US & Canada:
    +
  • UK: +

(Gly14)-Humanin (human)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

(Gly14)-Humanin (human) is an analog of Humanin. Humanin is a micropeptide encoded by the 16S ribosomal RNA gene MT-RNR2 in the mitochondrial genome.

Category
Others
Catalog number
BAT-010818
CAS number
330936-70-4
Molecular Formula
C118H202N34O31S2
Molecular Weight
2657.21
(Gly14)-Humanin (human)
IUPAC Name
(4S)-5-[[(2S,3S)-1-[[(2S)-1-[[(2S)-1-[(2S)-2-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-5-carbamimidamido-1-[[(2S)-5-carbamimidamido-1-[[(1S)-1-carboxyethyl]amino]-1-oxopentan-2-yl]amino]-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]carbamoyl]pyrrolidin-1-yl]-4-methyl-1-oxopentan-2-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-4-[[2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-amino-4-methylsulfanylbutanoyl]amino]propanoyl]pyrrolidine-2-carbonyl]amino]-5-carbamimidamidopentanoyl]amino]acetyl]amino]-3-phenylpropanoyl]amino]-3-hydroxypropanoyl]amino]-3-sulfanylpropanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]acetyl]amino]-5-oxopentanoic acid
Synonyms
H-Met-Ala-Pro-Arg-Gly-Phe-Ser-Cys-Leu-Leu-Leu-Leu-Thr-Gly-Glu-Ile-Asp-Leu-Pro-Val-Lys-Arg-Arg-Ala-OH
Sequence
MAPRGFSCLLLLTGEIDLPVKRRA
Storage
Store at -20°C
InChI
InChI=1S/C118H202N34O31S2/c1-19-65(14)92(112(179)144-81(54-90(159)160)104(171)145-82(52-63(10)11)114(181)152-46-29-37-86(152)109(176)148-91(64(12)13)111(178)139-72(32-23-24-41-119)97(164)137-74(35-27-44-129-118(125)126)98(165)136-73(34-26-43-128-117(123)124)96(163)133-67(16)115(182)183)149-99(166)75(38-39-89(157)158)134-87(155)56-131-110(177)93(68(17)154)150-105(172)79(51-62(8)9)142-101(168)77(49-60(4)5)140-100(167)76(48-59(2)3)141-102(169)78(50-61(6)7)143-107(174)84(58-184)147-106(173)83(57-153)146-103(170)80(53-69-30-21-20-22-31-69)135-88(156)55-130-95(162)71(33-25-42-127-116(121)122)138-108(175)85-36-28-45-151(85)113(180)66(15)132-94(161)70(120)40-47-185-18/h20-22,30-31,59-68,70-86,91-93,153-154,184H,19,23-29,32-58,119-120H2,1-18H3,(H,130,162)(H,131,177)(H,132,161)(H,133,163)(H,134,155)(H,135,156)(H,136,165)(H,137,164)(H,138,175)(H,139,178)(H,140,167)(H,141,169)(H,142,168)(H,143,174)(H,144,179)(H,145,171)(H,146,170)(H,147,173)(H,148,176)(H,149,166)(H,150,172)(H,157,158)(H,159,160)(H,182,183)(H4,121,122,127)(H4,123,124,128)(H4,125,126,129)/t65-,66-,67-,68+,70-,71-,72-,73-,74-,75-,76-,77-,78-,79-,80-,81-,82-,83-,84-,85-,86-,91-,92-,93-/m0/s1
InChI Key
WUYRHUFIUFJVQU-XJUNAYMOSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CC(=O)O)C(=O)NC(CC(C)C)C(=O)N1CCCC1C(=O)NC(C(C)C)C(=O)NC(CCCCN)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCCNC(=N)N)C(=O)NC(C)C(=O)O)NC(=O)C(CCC(=O)O)NC(=O)CNC(=O)C(C(C)O)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CS)NC(=O)C(CO)NC(=O)C(CC2=CC=CC=C2)NC(=O)CNC(=O)C(CCCNC(=N)N)NC(=O)C3CCCN3C(=O)C(C)NC(=O)C(CCSC)N
1. [Gly14]-Humanin inhibits an angiotensin II-induced vascular smooth muscle cell phenotypic switch via ameliorating intracellular oxidative stress
Yi Xie, Jin Zhang, Min Zhang, Li Jiang Hum Exp Toxicol. 2022 Jan-Dec;41:9603271221136208. doi: 10.1177/09603271221136208.
Angiotensin II (AngII) is involved in the pathogenesis of hypertensive artery remodeling by inducing a phenotypic switch in vascular smooth muscle cells [Gly14]-Humanin (HNG), a humanin analogue, exerts potent cytoprotective effects both in vitro and in vivo. This study aimed to investigate the effects of HNG on an AngII-induced phenotypic switch in VSMCs and the potential mechanisms underlying these effects. The roles of [Gly14]-Humanin in AngII-stimulated VSMCs proliferation and migration was detected by CCK-8 assay, Cell cycle analysis, wound healing assay, trsnswell assay and western blot. The mechanism by which [Gly14]-Humanin regulates VSMC phenotypic switch was determined by intracellular oxidative stress detection, transcriptomic analysis and qRT-PCR. The results showed that HNG inhibited AngII-induced VSMC proliferation and migration and maintained a stable VSMC contractile phenotype. In addition, HNG reduced the level of AngII-induced oxidative stress in vascular smooth muscle cells. This process could be accomplished by inhibiting nicotinamide adenine dinucleotide phosphate oxidase activity. In conclusion, the results suggested that HNG ameliorated intracellular oxidative stress by inhibiting NAD(P)H oxidase activity, thereby suppressing the AngII-induced VSMC phenotype switch. Thus, HNG is a potential drug to ameliorate artery remodeling in hypertension.
2. [Gly14]-Humanin Ameliorates High Glucose-Induced Apoptosis by Inhibiting the Expression of MicroRNA-155 in Endothelial Microparticles
Meng-Yuan Shen, Miao Wang, Zhihua Liu, Shurong Wang, Ying Xie Diabetes Metab Syndr Obes. 2021 May 24;14:2335-2347. doi: 10.2147/DMSO.S306026. eCollection 2021.
Background: Humanin, a newly emerging endogenously expressed cytoprotective peptide, has been shown to have anti-apoptotic properties effects by protecting neuronal cells injury. Endothelial microparticles (EMPs) are considered as vital mediators in intercellular communication. EMPs may regulate various physiological and pathological processes by transferring mRNAs and microRNAs (miRNAs) to recipient cells. Methods: EMPs were isolated from human umbilical vein endothelial cells (HUVECs) by ultracentrifugation. EMPs were characterized by transmission electron microscopy and nanoparticle tracking analyses. Observation of EMPs uptake into HUVECs and the number of EMPs were realized by confocal microscopy. The expression of miR-155 was examined using real-time PCR. Cell apoptosis was examined by flow cytometry assay. Results: We found that high glucose (HG) increased the number of EMPs and upregulated the expression of miR-155 contained within EMPs, which was mitigated by HNG pretreatment. miR-155 overexpression in EMPs reversed the effects of HNG pretreatment and increased apoptosis of target cells. Effects of HNG pretreatment on HG-treated endothelial cells (ECs) were mitigated after miR-155 mimic transfection into HUVECs while were augmented after miR-155 inhibitor transfection into HUVECs. Conclusion: HNG inhibited HG-induced apoptosis of ECs and the effect of HNG may be mediated by inhibiting the transfer of EMPs miR-155 from HG-induced HUVECs to normal cells. This study provides a new direction for biological products related to humanin to treat vascular complications associated with all forms of diabetes mellitus.
3. Protection effect of [Gly14]-Humanin from apoptosis induced by high glucose in human umbilical vein endothelial cells
Ying Xie, Zhi-Hua Liu, Xiao-Yun Li, Yan-de Zhou, Xingshun Xu, Li-Fang Hu, Yan-Lin Zhang, Chun-Feng Liu Diabetes Res Clin Pract. 2014 Dec;106(3):560-6. doi: 10.1016/j.diabres.2014.09.020. Epub 2014 Oct 16.
Aims: Humanin (HN) is known for its anti-apoptotic functions in neuronal cells. In this study, we sought to investigate the protective effect of [Gly14]-Humanin (HNG) in high glucose (HG)-induced apoptosis of human umbilical vein endothelial cells (HUVECs). Methods: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to examine cell viability, DNA chromatin morphology was assessed using Hoechst 33342 staining, and the generation of intracellular reactive oxygen species (ROS) was assessed using the fluorescent probe dichlorofluorescein diacetate (DCFH-DA). The expression of poly ADP-ribose polymerase (PARP), the pro-apoptotic protein bax and the anti-apoptotic protein bcl-2 were examined using western blot analysis. The mRNA level of bax and bcl-2 were detected by quantitative Real-Time PCR. Results: Compared with treatment with HG 72h, pretreatment with HNG for 3h significantly increased cell viability (P<0.001), reduced nuclear fluorescence of HUVECs (P<0.05), the levels of cleaved PARP (P<0.05), ROS formation (P<0.05) and the ratio of bax/bcl-2 (P<0.05) compared with treatment with HG for 72h. Quantitative Real-Time PCR showed that mRNA level of bax reduced (P<0.05) and mRNA level of bcl-2 increased (P<0.05) after pretreatment with HNG. Conclusions: Our results imply that HNG can protect HUVECs from apoptosis induced by HG through the bax/bcl-2 pathway.
Online Inquiry
Verification code
Inquiry Basket