1. Rapid synthesis of alkoxyamine hydrochloride derivatives from alkyl bromide and N,N'- di- tert-butoxycarbonylhydroxylamine ((Boc)2NOH)
P Suresh Jayasekara, Kenneth A Jacobson Synth Commun. 2014 Aug 1;44(16):2344-2347. doi: 10.1080/00397911.2014.895014.
The conventional route to alkoxyamine hydrochloride derivatives is by reaction of alkyl bromides with N-hydroxyphthalimide or N-hydroxysuccinimide followed by addition of hydrazine and HCl. Transformation of an alkyl bromide to the corresponding alkoxyamine hydrochloride can be accomplished more rapidly in high yield and without using hazardous hydrazine by reaction of (Boc)2NOH (N,N'-di-tert-butoxycarbonylhydroxylamine) and alkyl bromide followed by addition of HCl. Alkoxyamine hydrochlorides are powerful reagents in organic synthesis that can be used to synthesize alkoxyimino derivatives after condensation with a ketone or aldehyde.
2. Metal-free and regiospecific synthesis of 3-arylindoles
Chuangchuang Xu, Wenlai Xie, Jiaxi Xu Org Biomol Chem. 2020 Apr 8;18(14):2661-2671. doi: 10.1039/d0ob00317d.
A convenient, metal-free, and organic acid-base promoted synthetic method to prepare 3-arylindoles from 3-aryloxirane-2-carbonitriles and arylhydrazine hydrochlorides has been developed. In the reaction, the organic acid catalyzes a tandem nucleophilic ring-opening reaction of aryloxiranecarbonitriles and arylhydrazine hydrochlorides and Fischer indolization. The organic base triethylamine plays a crucial role in the final elimination step in the Fischer indole synthesis, affording 3-arylindoles regiospecifically. The reaction features advantages of microwave acceleration, non-metal participation, short reaction time, organic acid-base co-catalysis, and broad substrate scope.