1. Conformational studies of a peptide corresponding to a region of the C-terminus of ribonuclease A: implications as a potential chain-folding initiation site
J M Beals, E Haas, S Krausz, H A Scheraga Biochemistry. 1991 Aug 6;30(31):7680-92. doi: 10.1021/bi00245a004.
Conformational properties of the OT-16 peptide, the C-terminal 20 amino acids of RNase A, were examined by nonradiative energy transfer. A modified OT-16 peptide was prepared by solid-phase synthesis with the inclusion of diaminobutyric acid (DABA) at the C-terminus. The OT-16-DABA peptide was labeled with a fluorescent 1,5-dimethylaminonaphthalene sulfonyl (dansyl, DNS) acceptor at the N-terminal amine and a fluorescent naphthoxyacetic acid (NAA) donor at the gamma-amine of the DABA located at the C-terminus of the peptide by using an orthogonal protection scheme. Energy transfer was monitored in DNS-OT-16-DABA-NAA by using both fluorescence intensity (sensitized emission) and lifetime (donor quenching) experiments. The lifetime data indicate that the peptide system is a dynamic, flexible one. A detailed analysis, based on a dynamic model that includes a skewed Gaussian function to model the equilibrium distribution of interprobe distances and a mutual diffusion coefficient between the two probes to model conformational dynamics in the peptide [Beechem & Haas (1989) Biophys. J. 55, 1225.], identified the existence of a partially ordered structure (relatively narrow distribution of interprobe distances) at temperatures greater than or equal to 20 degrees C in the absence of denaturant. The width and the position of the average of the distributions decrease with increasing temperature, in this range; this suggests that the structure is stabilized by hydrophobic interactions. In addition, the peptide undergoes cold denaturation at around 1.5 degrees C as indicated by broadening of the distance distribution. The addition of 6 M guanidine hydrochloride (Gdn-HCl) also broadens the distance distribution significantly, presumably by eliminating the hydrophobic interactions and unfolding the peptide. The results of the analysis of the distance distribution demonstrate that (1) nonradiative energy transfer can be used to study the conformational dynamics of peptides on the nanosecond time scale, (2) a partially ordered structure of OT-16-DABA exists in solution under typical refolding conditions, and (3) structural constraints (presumably hydrophobic interactions) necessary for the formation of a chain-folding initiation site in RNase A are also present in the OT-16-DABA peptide in the absence of denaturant and are disrupted by Gdn-HCl.
2. Conformational unfolding in the N-terminal region of ribonuclease A detected by nonradiative energy transfer
C A McWherter, E Haas, A R Leed, H A Scheraga Biochemistry. 1986 Apr 22;25(8):1951-63. doi: 10.1021/bi00356a018.
Unfolding in the N-terminal region of RNase A was studied by the nonradiative energy-transfer technique. RNase A was labeled with a nonfluorescent acceptor (2,4-dinitrophenyl) on the alpha-amino group and a fluorescent donor (ethylenediamine monoamide of 2-naphthoxyacetic acid) on a carboxyl group in the vicinity of residue 50 (75% at Glu-49 and 25% at Asp-53). The distribution of donor labeling sites does not affect the results of this study since they are close in both the sequence and the three-dimensional structure. The sites of labeling were determined by peptide mapping. The derivatives possessed full enzymatic activity and underwent reversible thermal transitions. However, there were some quantitative differences in the thermodynamic parameters. When the carboxyl groups were masked, there was a 5 degrees C lowering of the melting temperature at pH 2 and 4, and no significant change in delta H(Tm). Labeling of the alpha-amino group had no effect on the melting temperature or delta H(Tm) at pH 2 but did result in a dramatic decrease in delta H(Tm) of the unfolding reaction at pH 4. The melting temperature did not change appreciably at pH 4, indicating that an enthalpy/entropy compensation had occurred. The efficiencies of energy transfer determined with both fluorescence intensity and lifetime measurements were in reasonably good agreement. The transfer efficiency dropped from about 60% under folding conditions to roughly 20% when the derivatives were unfolded with disulfide bonds intact and was further reduced to 5% when the disulfide bonds were reduced. The interprobe separation distance was estimated to be 35 +/- 2 A under folding conditions. The contribution to the interprobe distance resulting from the finite size of the probes was treated by using simple geometric considerations and a rotational isomeric state model of the donor probe linkage. With this model, the estimated average interprobe distance of 36 A is in excellent agreement with the experimental result cited above.
3. Distributions of intramolecular distances in the reduced and denatured states of bovine pancreatic ribonuclease A. Folding initiation structures in the C-terminal portions of the reduced protein
A Navon, V Ittah, P Landsman, H A Scheraga, E Haas Biochemistry. 2001 Jan 9;40(1):105-18. doi: 10.1021/bi001946o.
The purpose of this investigation is to characterize the reduced state of RNase A (r-RNase A) in terms of (i) intramolecular distances, (ii) the sequence of formation of stable loops in the initial stages of folding, and (iii) the unfolding transitions induced by GdnHCl. This is accomplished by identifying specific subdomain structures and local and long-range interactions that direct the folding process of this protein and lead to the native fold and formation of the disulfide bonds. Eleven pairs of dispersed sites in the RNase A molecule were labeled with fluorescent donor and acceptor probes, and the distributions of intramolecular distances (IDDs) were determined by means of time-resolved dynamic nonradiative excitation energy transfer (TR-FRET) measurements. The mutants were designed to search for (a) a possible nonrandom fold of the backbone in the collapsed state and (b) possible loops stabilized by long-range interactions. It was found that, under folding conditions, (i) the labeled mutants of r-RNase A in refolding buffer (the R(N) state) exhibit features of specific (nonrandom) compact but very dispersed subdomain structures (indicated by short mean distances, broad IDDs, and a weak dependence of the mean distances on segment length), (ii) the backbone fold in the C-terminal beta-like portion of the molecule appears to adopt a native-like overall fold, (iii) the N-terminal alpha-like portion of the chain is separated from the C-terminal core by very large intramolecular distances, larger than those in the crystal structure, and (iv) perturbations by addition of GdnHCl reveal several conformational transitions in different sections of the chain. Addition of GdnHCl to the native disulfide-intact protein provided a reference state for the extent of expansion of intramolecular distances under denaturing conditions. In conclusion, r-RNase A under folding conditions (the R(N) state) is poised for the final folding step(s) with a native-like trace of the chain fold but a large separation between the two subdomains which is then decreased upon introduction of three of the four native disulfide cross-links.