Need Assistance?
  • US & Canada:
    +
  • UK: +

GRGDSPK

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

GRGDSPK is a competitive and reversible inhibitory peptide for RGD-mediated adhesion between integrin and extracellular matrix molecules.

Category
Peptide Inhibitors
Catalog number
BAT-010501
CAS number
111119-28-9
Molecular Formula
C28H49N11O11
Molecular Weight
715.76
GRGDSPK
IUPAC Name
(2S)-6-amino-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[(2-aminoacetyl)amino]-5-(diaminomethylideneamino)pentanoyl]amino]acetyl]amino]-3-carboxypropanoyl]amino]-3-hydroxypropanoyl]pyrrolidine-2-carbonyl]amino]hexanoic acid
Synonyms
EMD 56574; H-Gly-Arg-Gly-Asp-Ser-Pro-Lys-OH; glycyl-L-arginyl-glycyl-L-alpha-aspartyl-L-seryl-L-prolyl-L-lysine; N2-(1-(N-(N-(N-(N2-Glycyl-L-arginyl)glycyl)-L-alpha-aspartyl)-L-seryl)-L-prolyl)-L-lysine
Appearance
White or Off-white Lyophilized Powder
Purity
95%
Density
1.59±0.1 g/cm3 (Predicted)
Sequence
GRGDSPK
Storage
Store at -20°C
Solubility
Soluble in Water
InChI
InChI=1S/C28H49N11O11/c29-8-2-1-5-16(27(49)50)37-25(47)19-7-4-10-39(19)26(48)18(14-40)38-24(46)17(11-22(43)44)36-21(42)13-34-23(45)15(35-20(41)12-30)6-3-9-33-28(31)32/h15-19,40H,1-14,29-30H2,(H,34,45)(H,35,41)(H,36,42)(H,37,47)(H,38,46)(H,43,44)(H,49,50)(H4,31,32,33)/t15-,16-,17-,18-,19-/m0/s1
InChI Key
ZRVZOBGMZWVJOS-VMXHOPILSA-N
Canonical SMILES
C1CC(N(C1)C(=O)C(CO)NC(=O)C(CC(=O)O)NC(=O)CNC(=O)C(CCCN=C(N)N)NC(=O)CN)C(=O)NC(CCCCN)C(=O)O
1. Bio-Functionalized Chitosan for Bone Tissue Engineering
Paola Brun, et al. Int J Mol Sci. 2021 May 31;22(11):5916. doi: 10.3390/ijms22115916.
Hybrid biomaterials allow for the improvement of the biological properties of materials and have been successfully used for implantology in medical applications. The covalent and selective functionalization of materials with bioactive peptides provides favorable results in tissue engineering by supporting cell attachment to the biomaterial through biochemical cues and interaction with membrane receptors. Since the functionalization with bioactive peptides may alter the chemical and physical properties of the biomaterials, in this study we characterized the biological responses of differently functionalized chitosan analogs. Chitosan analogs were produced through the reaction of GRGDSPK (RGD) or FRHRNRKGY (HVP) sequences, both carrying an aldehyde-terminal group, to chitosan. The bio-functionalized polysaccharides, pure or "diluted" with chitosan, were chemically characterized in depth and evaluated for their antimicrobial activities and biocompatibility toward human primary osteoblast cells. The results obtained indicate that the bio-functionalization of chitosan increases human-osteoblast adhesion (p < 0.005) and proliferation (p < 0.005) as compared with chitosan. Overall, the 1:1 mixture of HVP functionalized-chitosan:chitosan is the best compromise between preserving the antibacterial properties of the material and supporting osteoblast differentiation and calcium deposition (p < 0.005 vs. RGD). In conclusion, our results reported that a selected concentration of HVP supported the biomimetic potential of functionalized chitosan better than RGD and preserved the antibacterial properties of chitosan.
2. Culture of human vascular endothelial cells on an RGD-containing synthetic peptide attached to a starch-coated polystyrene surface: comparison with fibronectin-coated tissue grade polystyrene
J Holland, L Hersh, M Bryhan, E Onyiriuka, L Ziegler Biomaterials. 1996 Nov;17(22):2147-56. doi: 10.1016/0142-9612(96)00028-2.
A synthetic peptide, Gly-Arg-Gly-Asp-Ser-Pro-Lys (GRGDSPK), which includes the cell-adhesive region of fibronectin, Arg-Gly-Asp (RGD), was covalently bound to a dialdehyde starch (DAS) coating on a polymer surface by reductive amination. The GRGDSPK/DAS-coated surface was characterized by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). AFM and SEM revealed a uniform, roughened, textured surface, much more so than standard polymer or adhesive protein-coated polymer surfaces. XPS showed that GRGDSPK binding to DAS occurred in dose-dependent fashion in the 0-200 micrograms ml-1 GRGDSPK concentration range, with a plateau happening in the 200-400 micrograms ml-1 range. AFM revealed a uniform peptide layer on the DAS surface with a maximum separation distance of 50 nm between peptides. Angle-dependent XPS showed that the peptide is present in nearly constant amounts to at least 10 nm depth of the DAS coating. The attachment, spreading and growth properties of anchorage-dependent human umbilical vein endothelial cells (EC) on the GRGDSPK/DAS-coated polystyrene surface were compared with a standard fibronectin-coated polystyrene surface. EC adhesion, spreading and growth properties were similar for cells plated on polystyrene surfaces coated with fibronectin (5 micrograms cm-2) and GRGDSPK (25-50 micrograms ml-1)/DAS. In contrast, EC adhesion, spreading and growth performance significantly increased for cells plated on GRGDSPK (100-200 micrograms ml-1)/DAS compared with the fibronectin-coated surface. These findings support the conclusion that the GRGDSPK/DAS-coated surface can be substituted for an adhesive protein-coated surface in the culture of anchorage-dependent cells.
3. Fibronectin regulates calvarial osteoblast differentiation
A M Moursi, C H Damsky, J Lull, D Zimmerman, S B Doty, S Aota, R K Globus J Cell Sci. 1996 Jun;109 ( Pt 6):1369-80. doi: 10.1242/jcs.109.6.1369.
The secretion of fibronectin by differentiating osteoblasts and its accumulation at sites of osteogenesis suggest that fibronectin participates in bone formation. To test this directly, we determined whether fibronectin-cell interactions regulate progressive differentiation of cultured fetal rat calvarial osteoblasts. Spatial distributions of alpha 5 integrin subunit, fibronectin, osteopontin (bone sialoprotein I) and osteocalcin (bone Gla-protein) were similar in fetal rat calvaria and mineralized, bone-like nodules formed by cultured osteoblasts. Addition of anti-fibronectin antibodies to cultures at confluence reduced subsequent formation of nodules to less than 10% of control values, showing that fibronectin is required for normal nodule morphogenesis. Anti-fibronectin antibodies selectively inhibited steady-state expression of mRNA for genes associated with osteoblast differentiation; mRNA levels for alkaline phosphatase and osteocalcin were suppressed, whereas fibronectin, type I collagen and osteopontin were unaffected. To identify functionally relevant domains of fibronectin, we treated cells with soluble fibronectin fragments and peptides. Cell-binding fibronectin fragments (type III repeats 6-10) containing the Arg-Gly-Asp (RGD) sequence blocked both nodule initiation and maturation, whether or not they contained a functional synergy site. In contrast, addition of the RGD-containing peptide GRGDSPK alone did not inhibit nodule initiation, although it did block nodule maturation. Thus, in addition to the RGD sequence, other features of the large cell-binding fragments contribute to the full osteogenic effects of fibronectin. Nodule formation and osteoblast differentiation resumed after anti-fibronectin antibodies or GRGDSPK peptides were omitted from the media, showing that the inhibition was reversible and the treatments were not cytotoxic. Outside the central cell-binding domain, peptides from the IIICS region and antibodies to the N terminus did not inhibit nodule formation. We conclude that osteoblasts interact with the central cell-binding domain of endogenously produced fibronectin during early stages of differentiation, and that these interactions regulate both normal morphogenesis and gene expression.
Online Inquiry
Verification code
Inquiry Basket