Need Assistance?
  • US & Canada:
    +
  • UK: +

GRPP (human)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

GRPP (human) is a synthetic analogue of a cleavage product resulting from proglucagon processing in pancreatic α- and intestinal L-cells.

Category
Functional Peptides
Catalog number
BAT-014527
CAS number
1132745-52-8
Molecular Formula
C136H215N41O58S
Molecular Weight
3384.47
IUPAC Name
(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-5-carbamimidamidopentanoyl]amino]-3-hydroxypropanoyl]amino]-4-methylpentanoyl]amino]-5-oxopentanoyl]amino]-3-carboxypropanoyl]amino]-3-hydroxybutanoyl]amino]-4-carboxybutanoyl]amino]-4-carboxybutanoyl]amino]hexanoyl]amino]-3-hydroxypropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-hydroxypropanoyl]amino]-3-phenylpropanoyl]amino]-3-hydroxypropanoyl]amino]propanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]propanoyl]amino]-3-carboxypropanoyl]pyrrolidine-2-carbonyl]amino]-4-methylpentanoyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]pyrrolidine-2-carbonyl]amino]-3-carboxypropanoyl]amino]-5-oxopentanoyl]amino]-4-methylsulfanylbutanoyl]amino]-4-oxobutanoyl]amino]-4-carboxybutanoyl]amino]butanedioic acid
Synonyms
Preproglucagon (21-50) (human); H-Arg-Ser-Leu-Gln-Asp-Thr-Glu-Glu-Lys-Ser-Arg-Ser-Phe-Ser-Ala-Ser-Gln-Ala-Asp-Pro-Leu-Ser-Asp-Pro-Asp-Gln-Met-Asn-Glu-Asp-OH; glicentin-related polypeptide (human); L-arginyl-L-seryl-L-leucyl-L-glutaminyl-L-alpha-aspartyl-L-threonyl-L-alpha-glutamyl-L-alpha-glutamyl-L-lysyl-L-seryl-L-arginyl-L-seryl-L-phenylalanyl-L-seryl-L-alanyl-L-seryl-L-glutaminyl-L-alanyl-L-alpha-aspartyl-L-prolyl-L-leucyl-L-seryl-L-alpha-aspartyl-L-prolyl-L-alpha-aspartyl-L-glutaminyl-L-methionyl-L-asparagyl-L-alpha-glutamyl-L-aspartic acid
Appearance
White Lyophilized Powder
Purity
≥95%
Density
1.6±0.1 g/cm3
Sequence
RSLQDTEEKSRSFSASQADPLSDPDQMNED
Storage
Store at -20°C
Solubility
Soluble in Water
InChI
InChI=1S/C136H215N41O58S/c1-59(2)44-75(160-126(226)86(55-180)170-107(207)65(138)20-14-39-147-135(143)144)117(217)154-70(27-33-94(141)187)114(214)163-80(49-100(197)198)122(222)175-104(63(7)184)131(231)159-73(30-36-98(193)194)113(213)153-71(28-34-96(189)190)112(212)151-66(21-12-13-38-137)109(209)171-87(56-181)125(225)152-67(22-15-40-148-136(145)146)110(210)172-88(57-182)127(227)161-77(46-64-18-10-9-11-19-64)119(219)173-84(53-178)123(223)150-62(6)106(206)169-85(54-179)124(224)157-68(25-31-92(139)185)108(208)149-61(5)105(205)166-81(50-101(199)200)132(232)176-41-16-23-90(176)129(229)164-76(45-60(3)4)118(218)174-89(58-183)128(228)167-82(51-102(201)202)133(233)177-42-17-24-91(177)130(230)165-79(48-99(195)196)121(221)155-69(26-32-93(140)186)111(211)158-74(37-43-236-8)116(216)162-78(47-95(142)188)120(220)156-72(29-35-97(191)192)115(215)168-83(134(234)235)52-103(203)204/h9-11,18-19,59-63,65-91,104,178-184H,12-17,20-58,137-138H2,1-8H3,(H2,139,185)(H2,140,186)(H2,141,187)(H2,142,188)(H,149,208)(H,150,223)(H,151,212)(H,152,225)(H,153,213)(H,154,217)(H,155,221)(H,156,220)(H,157,224)(H,158,211)(H,159,231)(H,160,226)(H,161,227)(H,162,216)(H,163,214)(H,164,229)(H,165,230)(H,166,205)(H,167,228)(H,168,215)(H,169,206)(H,170,207)(H,171,209)(H,172,210)(H,173,219)(H,174,218)(H,175,222)(H,189,190)(H,191,192)(H,193,194)(H,195,196)(H,197,198)(H,199,200)(H,201,202)(H,203,204)(H,234,235)(H4,143,144,147)(H4,145,146,148)/t61-,62-,63+,65-,66-,67-,68-,69-,70-,71-,72-,73-,74-,75-,76-,77-,78-,79-,80-,81-,82-,83-,84-,85-,86-,87-,88-,89-,90-,91-,104-/m0/s1
InChI Key
HZWXEXRLQMSXBE-MYOGNRFPSA-N
Canonical SMILES
CC(C)CC(C(=O)NC(CO)C(=O)NC(CC(=O)O)C(=O)N1CCCC1C(=O)NC(CC(=O)O)C(=O)NC(CCC(=O)N)C(=O)NC(CCSC)C(=O)NC(CC(=O)N)C(=O)NC(CCC(=O)O)C(=O)NC(CC(=O)O)C(=O)O)NC(=O)C2CCCN2C(=O)C(CC(=O)O)NC(=O)C(C)NC(=O)C(CCC(=O)N)NC(=O)C(CO)NC(=O)C(C)NC(=O)C(CO)NC(=O)C(CC3=CC=CC=C3)NC(=O)C(CO)NC(=O)C(CCCNC(=N)N)NC(=O)C(CO)NC(=O)C(CCCCN)NC(=O)C(CCC(=O)O)NC(=O)C(CCC(=O)O)NC(=O)C(C(C)O)NC(=O)C(CC(=O)O)NC(=O)C(CCC(=O)N)NC(=O)C(CC(C)C)NC(=O)C(CO)NC(=O)C(CCCNC(=N)N)N
1. Enteroglucagon
J J Holst Annu Rev Physiol. 1997;59:257-71. doi: 10.1146/annurev.physiol.59.1.257.
The gene encoding proglucagon, the biosynthetic precursor of glucagon, is expressed not only in the pancreatic islets but also in endocrine cells of the gastrointestinal mucosa. The proglucagon (PG)-derived peptides from the gut include glicentin (corresponding to PG 1-69); smaller amounts of oxyntomodulin (PG 33-69) and glicentin-related pancreatic polypeptide (GRPP, PG 1-30); glucagon-like peptide-1 (GLP-1, PG 78-107 amide); intervening peptide-2 (IP-2, PG 111-122 amide); and glucagon-like peptide-2 (GLP-2, PG 126-158). All are secreted into the blood in response to ingestion of carbohydrates and lipids. Only oxyntomodulin and GLP-1 have proven biological activity; oxyntomodulin possibly because it interacts (but with lower potency) with GLP-1 and glucagon receptors. GLP-1 is the most potent insulinotropic hormone known and functions as an incretin hormone. It also inhibits glucagon secretion and, therefore, lowers blood glucose. This effect is preserved in patients with non-insulin-dependent diabetes mellitus, in whom infusions of GLP-1 may completely normalize blood glucose. However, GLP-1 also potently inhibits gastrointestinal secretion and motility, and its physiological functions include mediation of the "ileal-brake" effect, i.e. the inhibition of upper gastrointestinal functions elicited by the presence of unabsorbed nutrients in the ileum. As such it may serve to regulate food intake.
2. Glicentin-related pancreatic polypeptide inhibits glucose-stimulated insulin secretion from the isolated pancreas of adult male rats
Lynda Whiting, Kevin W Stewart, Deborah L Hay, Paul W Harris, Yee S Choong, Anthony R J Phillips, Margaret A Brimble, Garth J S Cooper Physiol Rep. 2015 Dec;3(12):e12638. doi: 10.14814/phy2.12638.
Peptides derived from the glucagon gene Gcg, for example, glucagon and glucagon-like peptide 1 (GLP-1), act as physiological regulators of fuel metabolism and are thus of major interest in the pathogenesis of diseases, such as type-2 diabetes and obesity, and their therapeutic management. Glicentin-related pancreatic polypeptide (GRPP) is a further, 30 amino acid Gcg-derived peptide identified in human, mouse, rat, and pig. However, the potential glucoregulatory function of this peptide is largely unknown. Here, we synthesized rat GRPP (rGRPP) and a closely related peptide, rat GRPP-like peptide (rGRPP-LP), and investigated their actions in the liver and pancreas of adult male rats by employing isolated-perfused organ preparations. Rat GRPP and rGRPP-LP did not affect glucose output from the liver, but both elicited potent inhibition of glucose-stimulated insulin secretion (GSIS) from the rat pancreas. This action is unlikely to be mediated by glucagon or GLP-1 receptors, as rGRPP and rGRPP-LP did not stimulate cyclic adenosine monophosphate (cAMP) production from the glucagon or GLP-1 receptors, nor did they antagonize glucagon- or GLP-1-stimulated cAMP-production at either receptor. GRPP and GRPP-LP may be novel regulators of insulin secretion, acting through an as-yet undefined receptor.
3. Proglucagon-Derived Peptides as Therapeutics
Ryan A Lafferty, Finbarr P M O'Harte, Nigel Irwin, Victor A Gault, Peter R Flatt Front Endocrinol (Lausanne). 2021 May 18;12:689678. doi: 10.3389/fendo.2021.689678. eCollection 2021.
Initially discovered as an impurity in insulin preparations, our understanding of the hyperglycaemic hormone glucagon has evolved markedly over subsequent decades. With description of the precursor proglucagon, we now appreciate that glucagon was just the first proglucagon-derived peptide (PGDP) to be characterised. Other bioactive members of the PGDP family include glucagon-like peptides -1 and -2 (GLP-1 and GLP-2), oxyntomodulin (OXM), glicentin and glicentin-related pancreatic peptide (GRPP), with these being produced via tissue-specific processing of proglucagon by the prohormone convertase (PC) enzymes, PC1/3 and PC2. PGDP peptides exert unique physiological effects that influence metabolism and energy regulation, which has witnessed several of them exploited in the form of long-acting, enzymatically resistant analogues for treatment of various pathologies. As such, intramuscular glucagon is well established in rescue of hypoglycaemia, while GLP-2 analogues are indicated in the management of short bowel syndrome. Furthermore, since approval of the first GLP-1 mimetic for the management of Type 2 diabetes mellitus (T2DM) in 2005, GLP-1 therapeutics have become a mainstay of T2DM management due to multifaceted and sustainable improvements in glycaemia, appetite control and weight loss. More recently, longer-acting PGDP therapeutics have been developed, while newfound benefits on cardioprotection, bone health, renal and liver function and cognition have been uncovered. In the present article, we discuss the physiology of PGDP peptides and their therapeutic applications, with a focus on successful design of analogues including dual and triple PGDP receptor agonists currently in clinical development.
Online Inquiry
Verification code
Inquiry Basket