Guangxitoxin 1E
Need Assistance?
  • US & Canada:
    +
  • UK: +

Guangxitoxin 1E

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Guangxitoxin 1E is a Kv2.1 and Kv2.2 channel blocker (IC50 = 1-3 nM) that potentiates glucose-stimulated insulin secretion from human islets in vitro. Guangxitoxin 1E increases plasma somatostatin levels, but exhibits no effect on plasma insulin, glucagon or blood glucose levels in mice.

Category
Peptide Inhibitors
Catalog number
BAT-010341
CAS number
1233152-82-3
Molecular Formula
C178H248N44O45S7
Molecular Weight
3948.61
Guangxitoxin 1E
IUPAC Name
(2S)-1-[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-4-amino-4-oxo-2-[[(1R,4S,10S,13S,16S,22S,25R,30R,33S,36S,42S,48S,54R,57S,60S,63S,66S,75R,80R,86S,89S,92S,95S)-13,42,57,89-tetrakis(4-aminobutyl)-75-[[(2S)-2-[[2-[[(2S)-2-amino-4-carboxybutanoyl]amino]acetyl]amino]-4-carboxybutanoyl]amino]-66-benzyl-4,48-bis(hydroxymethyl)-92-[(4-hydroxyphenyl)methyl]-16,60,63-tris(1H-indol-3-ylmethyl)-33-methyl-22-(2-methylpropyl)-2,3a,5,11,14,17,20,23,32,35,41,44,47,50,53,56,59,62,65,68,71,74,81,87,90,93,96-heptacosaoxo-95-propan-2-yl-a,27,28,77,78,99-hexathia-2a,3,6,12,15,18,21,24,31,34,40,43,46,49,52,55,58,61,64,67,70,73,82,88,91,94,97-heptacosazahexacyclo[52.43.4.230,80.06,10.036,40.082,86]trihectane-25-carbonyl]amino]butanoyl]amino]-3-phenylpropanoyl]pyrrolidine-2-carbonyl]amino]-4-methylsulfanylbutanoyl]pyrrolidine-2-carboxylic acid
Synonyms
H-Glu-Gly-Glu-Cys(1)-Gly-Gly-Phe-Trp-Trp-Lys-Cys(2)-Gly-Ser-Gly-Lys-Pro-Ala-Cys(3)-Cys(1)-Pro-Lys-Tyr-Val-Cys(2)-Ser-Pro-Lys-Trp-Gly-Leu-Cys(3)-Asn-Phe-Pro-Met-Pro-OH; L-alpha-glutamyl-glycyl-L-alpha-glutamyl-L-cysteinyl-glycyl-glycyl-L-phenylalanyl-L-tryptophyl-L-tryptophyl-L-lysyl-L-cysteinyl-glycyl-L-seryl-glycyl-L-lysyl-L-prolyl-L-alanyl-L-cysteinyl-L-cysteinyl-L-prolyl-L-lysyl-L-tyrosyl-L-valyl-L-cysteinyl-L-seryl-L-prolyl-L-lysyl-L-tryptophyl-glycyl-L-leucyl-L-cysteinyl-L-asparagyl-L-phenylalanyl-L-prolyl-L-methionyl-L-proline (4->19),(11->24),(18->31)-tris(disulfide)
Appearance
White Lyophilized Solid
Purity
>98%
Sequence
EGECGGFWWKCGSGKPACCPKYVCSPKWGLCNFPMP (Modifications: Disulfide bridge: 4-19, 11-24, 18-31)
Storage
Store at -20°C
Solubility
Soluble in Water
InChI
InChI=1S/C178H248N44O45S7/c1-95(2)70-118-159(247)214-131(165(253)208-124(77-139(184)226)163(251)209-125(73-99-34-11-8-12-35-99)175(263)219-65-28-49-137(219)171(259)203-117(59-69-268-6)174(262)222-68-31-50-138(222)178(266)267)92-272-271-91-130-167(255)216-133-94-274-270-90-128(213-158(246)115(56-58-147(235)236)195-142(229)83-189-150(238)108(183)55-57-146(233)234)153(241)190-81-140(227)188-82-141(228)198-119(71-98-32-9-7-10-33-98)160(248)206-123(76-103-80-187-111-41-18-15-38-107(103)111)162(250)207-122(75-102-79-186-110-40-17-14-37-106(102)110)161(249)200-112(42-19-23-60-179)157(245)212-129(154(242)193-86-145(232)199-126(87-223)152(240)192-84-143(230)196-116(45-22-26-63-182)173(261)218-64-27-46-134(218)168(256)194-97(5)149(237)211-130)89-269-273-93-132(215-172(260)148(96(3)4)217-164(252)120(72-100-51-53-104(225)54-52-100)204-155(243)113(43-20-24-61-180)201-170(258)136-48-30-67-221(136)177(133)265)166(254)210-127(88-224)176(264)220-66-29-47-135(220)169(257)202-114(44-21-25-62-181)156(244)205-121(151(239)191-85-144(231)197-118)74-101-78-185-109-39-16-13-36-105(101)109/h7-18,32-41,51-54,78-80,95-97,108,112-138,148,185-187,223-225H,19-31,42-50,55-77,81-94,179-183H2,1-6H3,(H2,184,226)(H,188,227)(H,189,238)(H,190,241)(H,191,239)(H,192,240)(H,193,242)(H,194,256)(H,195,229)(H,196,230)(H,197,231)(H,198,228)(H,199,232)(H,200,249)(H,201,258)(H,202,257)(H,203,259)(H,204,243)(H,205,244)(H,206,248)(H,207,250)(H,208,253)(H,209,251)(H,210,254)(H,211,237)(H,212,245)(H,213,246)(H,214,247)(H,215,260)(H,216,255)(H,217,252)(H,233,234)(H,235,236)(H,266,267)/t97-,108-,112-,113-,114-,115-,116-,117-,118-,119-,120-,121-,122-,123-,124-,125-,126-,127-,128-,129-,130-,131-,132-,133-,134-,135-,136-,137-,138-,148-/m0/s1
InChI Key
SZVUKNYCMKWHNH-VXVBYFJASA-N
Canonical SMILES
CC1C(=O)NC2CSSCC(NC(=O)C(NC(=O)CNC(=O)C(NC(=O)C(NC(=O)C3CCCN3C(=O)C(NC(=O)C4CSSCC(C(=O)NCC(=O)NC(C(=O)NCC(=O)NC(C(=O)N5CCCC5C(=O)N1)CCCCN)CO)NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)CNC(=O)CNC(=O)C(CSSCC(C(=O)N6CCCC6C(=O)NC(C(=O)NC(C(=O)NC(C(=O)N4)C(C)C)CC7=CC=C(C=C7)O)CCCCN)NC2=O)NC(=O)C(CCC(=O)O)NC(=O)CNC(=O)C(CCC(=O)O)N)CC8=CC=CC=C8)CC9=CNC1=CC=CC=C19)CC1=CNC2=CC=CC=C21)CCCCN)CO)CCCCN)CC1=CNC2=CC=CC=C21)CC(C)C)C(=O)NC(CC(=O)N)C(=O)NC(CC1=CC=CC=C1)C(=O)N1CCCC1C(=O)NC(CCSC)C(=O)N1CCCC1C(=O)O
1. EVAP: A two-photon imaging tool to study conformational changes in endogenous Kv2 channels in live tissues
Oscar Vivas, Sebastian Fletcher-Taylor, Jon T Sack, Robert Stewart, Mark Lillya, Rebecka J Sepela, Karen Zito, Bruce E Cohen, Laxmi K Parajuli, Parashar Thapa J Gen Physiol . 2021 Nov 1;153(11):e202012858. doi: 10.1085/jgp.202012858.
A primary goal of molecular physiology is to understand how conformational changes of proteins affect the function of cells, tissues, and organisms. Here, we describe an imaging method for measuring the conformational changes of the voltage sensors of endogenous ion channel proteins within live tissue, without genetic modification. We synthesized GxTX-594, a variant of the peptidyl tarantula toxin guangxitoxin-1E, conjugated to a fluorophore optimal for two-photon excitation imaging through light-scattering tissue. We term this tool EVAP (Endogenous Voltage-sensor Activity Probe). GxTX-594 targets the voltage sensors of Kv2 proteins, which form potassium channels and plasma membrane-endoplasmic reticulum junctions. GxTX-594 dynamically labels Kv2 proteins on cell surfaces in response to voltage stimulation. To interpret dynamic changes in fluorescence intensity, we developed a statistical thermodynamic model that relates the conformational changes of Kv2 voltage sensors to degree of labeling. We used two-photon excitation imaging of rat brain slices to image Kv2 proteins in neurons. We found puncta of GxTX-594 on hippocampal CA1 neurons that responded to voltage stimulation and retain a voltage response roughly similar to heterologously expressed Kv2.1 protein. Our findings show that EVAP imaging methods enable the identification of conformational changes of endogenous Kv2 voltage sensors in tissue.
2. Inhibition of Kv2.1 Potassium Channels by MiDCA1, A Pre-Synaptically Active PLA2-Type Toxin from Micrurus dumerilii carinicauda Coral Snake Venom
Cháriston André Dal Belo, Olaf Pongs, Stephen Hyslop, Yuri Correia Barreto, Niklas Schütter, Vitya Vardanyan, Sönke Hornig, Léa Rodrigues-Simioni, Sérgio Marangoni Toxins (Basel) . 2019 Jun 12;11(6):335. doi: 10.3390/toxins11060335.
MiDCA1, a phospholipase A2(PLA2) neurotoxin isolated fromMicrurus dumerilii carinicaudacoral snake venom, inhibited a major component of voltage-activated potassium (Kv) currents (41 ± 3% inhibition with 1 μM toxin) in mouse cultured dorsal root ganglion (DRG) neurons. In addition, the selective Kv2.1 channel blocker guangxitoxin (GxTx-1E) and MiDCA1 competitively inhibited the outward potassium current in DRG neurons. MiDCA1 (1 µM) reversibly inhibited the Kv2.1 current by 55 ± 8.9% in aXenopusoocyte heterologous system. The toxin showed selectivity for Kv2.1 channels over all the other Kv channels tested in this study. We propose that Kv2.1 channel blockade by MiDCA1 underlies the toxin's action on acetylcholine release at mammalian neuromuscular junctions.
3. Kv2 channel regulation of action potential repolarization and firing patterns in superior cervical ganglion neurons and hippocampal CA1 pyramidal neurons
Bruce P Bean, Pin W Liu J Neurosci . 2014 Apr 2;34(14):4991-5002. doi: 10.1523/JNEUROSCI.1925-13.2014.
Kv2 family "delayed-rectifier" potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ~60-80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ~55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from -70 mV, but not -80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at -70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation.
Online Inquiry
Verification code
Inquiry Basket