H-Ala-D-Gln-OH
Need Assistance?
  • US & Canada:
    +
  • UK: +

H-Ala-D-Gln-OH

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

H-Ala-D-Gln-OH is a potential impurity of L-alanyl-L-glutamine used for glutamine supplementation.

Category
Others
Catalog number
BAT-014947
CAS number
281660-34-2
Molecular Formula
C8H15N3O4
Molecular Weight
217.22
IUPAC Name
(2R)-5-amino-2-[[(2S)-2-aminopropanoyl]amino]-5-oxopentanoic acid
Synonyms
L-alanyl-D-glutamine; D-Glutamine, L-alanyl-
Boiling Point
615.4±55.0 °C at 760 mmHg
Sequence
H-Ala-D-Gln-OH
Storage
Store at -20°C
InChI
InChI=1S/C8H15N3O4/c1-4(9)7(13)11-5(8(14)15)2-3-6(10)12/h4-5H,2-3,9H2,1H3,(H2,10,12)(H,11,13)(H,14,15)/t4-,5+/m0/s1
InChI Key
HJCMDXDYPOUFDY-CRCLSJGQSA-N
Canonical SMILES
CC(C(=O)NC(CCC(=O)N)C(=O)O)N
1. The composition of the murein of Escherichia coli
B Glauner, J V Höltje, U Schwarz J Biol Chem. 1988 Jul 25;263(21):10088-95.
Escherichia coli murein, the polymer from which the shape-maintaining structure of the cell envelope is made, shows unexpected complexity. The separation of murein building blocks with high performance liquid chromatography reveals about 80 different types of muropeptides. Their behavior in high performance liquid chromatography and their chemical structure are described. The complexity of E. coli murein is due to the free combination of seven different types of side chains (L-Ala-D-Glu-R with R = -OH, -m-A2pm, -m-A2pm-D-Ala, -m-A2 pm-Gly, -m-A2pm-D-Ala-D-Ala, -m-A2pm-D-Ala-Gly, -m-A2pm-Lys-Arg) with two types of cross-bridges (D-Ala-m-A2pm, -m-A2pm-m-A2pm). The novel type of cross-bridge, A2pm-A2pm, contains an L,D-peptide bond, as shown by Edman degradation and chemical analysis of the reaction products. The A2pm-A2pm cross-bridge is assumed to play a role in the adaptation of the cross-linkage of murein to different growth conditions of the cell. The structural data of E. coli murein agree best with a model of a thin, however multilayered, murein sacculus.
2. Renal transport of amino acids
S Silbernagl Klin Wochenschr. 1979 Oct 1;57(19):1009-19. doi: 10.1007/BF01479986.
According to recent experimental data the renal transport of amino acids (AA) is characterized as follows. 1. Kinetics: Several reabsorption systems remove AA from the tubular fluid by active transport with Michaelis-Menten type kinetics. Passive diffusion does play only a relatively small role in reabsorption, but determines the pump leak steady state concentration at the end of the tubule. 2. Stereospecificity: Except for aspartate the naturally occurring L-analogs show a much larger affinity to the transport "carriers" than the D-isomers do. 3. Specificity: Separate transport mechanisms exist for a) the "acidic" AA (Glu and Asp); b) the "dibasic" AA (Arg, Lys, Orn); c) cystine/cystine; d) the "imino" acids (Pro, OH-Pro and other N-substituted AA); e) the beta- and gamma-AA (beta-Ala, GABA, Taurine); f) all other "neutral" AA. For the group (d) and maybe also for (b) and glycine additional low capacity/high affinity systems exist. 4. Localization: Except for glycine and taurine under normal conditions more than 80% of the filtered load are reabsorbed within the first third of the proximal tubule. At an elevated load the rest of the proximal tubule (including pars recta) but not the distal nephron is included into the reabsorptive process. AA are also taken up from the peritubular blood. 5. Energy sources: At least the main part of AA uptake at the brushborder membrane is dependent from a transmembranal Na+-gradient which in turn is established by the ATP driven Na+-pumps at the basolateral side of the cell (Secondary active transport or co-transport of AA). 6. Biochemistry: The biochemical nature of the AA-"carriers" is unknown. The recent hypothesis than a "gamma-glutamyl cycle" plays a major role in this context has been disproved to great extent. 7. Peptides: Oligopeptides (Angiotensin, Gluthathion) filtered at the glomerulum are hydrolyzed by brushborder peptidases within the tubule lumen. The splitting products, the free constituent amino acids, are reabsorbed subsequently by their respective transport systems.
3. Identification of a D-alanine-containing polypeptide precursor for the peptide opioid, dermorphin
A Mor, A Delfour, P Nicolas J Biol Chem. 1991 Apr 5;266(10):6264-70.
The naturally occurring amphibian skin peptides dermorphin (Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2) and dermenkephalin (Tyr-D-Met-Phe-His-Leu-Met-Asp-NH2) are highly potent and selective agonists at the mu- and the delta-opioid receptors, respectively. For peptides synthesized by animal cells, they have a rather peculiar structural feature of containing a D-amino acid residue in their sequence which imparts biological activity on them. The cloned cDNA encoding the prodermorphin precursor contains the usual alanine and methionine codons at positions where D-alanine and D-methionine are present in the mature products. In this study, dermorphin precursor was characterized in extracts from amphibian skin by antisera recognizing distinct epitopes within the predicted structure of pro-dermorphin. Proteolytic digestion of purified endogenous pro-dermorphin generated a peptide containing a D-alanine in position 2, identified as prepro-dermorphin-(80-89), i.e. Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-Gly-Glu-Ala. In addition, analysis of skin extracts by enzyme immunoassays coupled to high performance liquid chromatography separations revealed the presence of, besides dermenkephalin, novel dermenkephalin-related peptides, i.e. [L-Met2]dermenkephalin, dermenkephalin-OH, and [Met(O)6]dermenkephalin. [L-Met2]dermenkephalin was present in frog skin in a concentration of about 100 times that of dermenkephalin. These observations confirm that, despite the presence of D-amino acid residues, dermorphin and dermenkephalin are genuine products of post-translational processing of a ribosomally made precursor. They suggest that D-Ala and D-Met develop from a dehydrogenation/hydrogenation stereoinversion of their corresponding L isomers incorporated into pro-dermorphin, a process that occurs with low efficiency at an early stage of biosynthesis.
Online Inquiry
Verification code
Inquiry Basket