H-Arg-Ala-OH
Need Assistance?
  • US & Canada:
    +
  • UK: +

H-Arg-Ala-OH

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Arg-Ala inhibits angiotensin 1-converting enzyme (ACE) and yeast bleomycin hydrolase.

Category
Peptide Inhibitors
Catalog number
BAT-015886
CAS number
40968-45-4
Molecular Formula
C9H19N5O3
Molecular Weight
245.28
H-Arg-Ala-OH
IUPAC Name
(2S)-2-[[(2S)-2-amino-5-(diaminomethylideneamino)pentanoyl]amino]propanoic acid
Synonyms
Arginylalanine; Arg-Ala; L-arginyl-L-alanine; RA dipeptide; N-L-Arginyl-L-alanine; Arginine Alanine dipeptide; (S)-2-((S)-2-Amino-5-guanidinopentanamido)propanoic acid
Sequence
H-Arg-Ala-OH
InChI
InChI=1S/C9H19N5O3/c1-5(8(16)17)14-7(15)6(10)3-2-4-13-9(11)12/h5-6H,2-4,10H2,1H3,(H,14,15)(H,16,17)(H4,11,12,13)/t5-,6-/m0/s1
InChI Key
WVRUNFYJIHNFKD-WDSKDSINSA-N
Canonical SMILES
CC(C(=O)O)NC(=O)C(CCCN=C(N)N)N
1. The specificity of carboxypeptidase Y may be altered by changing the hydrophobicity of the S'1 binding pocket
S B Sørensen, K Breddam Protein Sci . 1997 Oct;6(10):2227-32. doi: 10.1002/pro.5560061017.
The S'1 binding pocket of carboxypeptidase Y is hydrophobic, spacious, and open to solvent, and the enzyme exhibits a preference for hydrophobic P'1 amino acid residues. Leu272 and Ser297, situated at the rim of the pocket, and Leu267, slightly further away, have been substituted by site-directed mutagenesis. The mutant enzymes have been characterized kinetically with respect to their P'1 substrate preferences using the substrate series FA-Ala-Xaa-OH (Xaa = Leu, Glu, Lys, or Arg) and FA-Phe-Xaa-OH (Xaa = Ala, Val, or Leu). The results reveal that hydrophobic P'1 residues bind in the vicinity of residue 272 while positively charged P'1 residues interact with Ser297. Introduction of Asp or Glu at position 267 greatly reduced the activity toward hydrophobic P'1 residues (Leu) and increased the activity two- to three-fold for the hydrolysis of substrates with Lys or Arg in P'1. Negatively charged substituents at position 272 reduced the activity toward hydrophobic P'1 residues even more, but without increasing the activity toward positively charged P'1 residues. The mutant enzyme L267D + L272D was found to have a preference for substrates with C-terminal basic amino acid residues. The opposite situation, where the positively charged Lys or Arg were introduced at one of the positions 267, 272, or 297, did not increase the rather low activity toward substrates with Glu in the P'1 position but greatly reduced the activity toward substrates with C-terminal Lys or Arg due to electrostatic repulsion. The characterized mutant enzymes exhibit various specificities, which may be useful in C-terminal amino acid sequence determinations.
2. Osteoclastogenesis is decreased by cysteine proteinase inhibitors
Magnus Abrahamson, Anita Lie, Anders Grubb, Maria Ransjö, Franciszek Kasprzykowski, Ulf H Lerner, Regina Kasprzykowska, Monica Brage Bone . 2004 Mar;34(3):412-24. doi: 10.1016/j.bone.2003.11.018.
The effects of cystatin C and other cysteine proteinase inhibitors on osteoclast formation and differentiation have been investigated. Cystatin C decreased osteoclast formation stimulated by parathyroid hormone (PTH), 1,25(OH)2-vitamin D3 or interleukin-6 (IL-6) (in the presence of its soluble receptor) as assessed by the number of tartrate-resistant acid phosphatase (TRAP+) multinucleated cells in mouse bone marrow cultures. The inhibitory effect was associated with decreased mRNA expression for the calcitonin receptor as well as decreased number of specific binding sites for 125I-calcitonin, and without any effect on the mRNA expression of receptor activator of nuclear factor kappaB (NF-kappaB) ligand (RANKL). Similarly, the cysteine proteinase inhibitors leupeptin, E-64 and benzyloxycarbonyl-Phe-Ala-diazomethane (Z-FA-CHN2) decreased PTH-stimulated formation of TRAP+ multinucleated cells and binding of 125I-calcitonin. A peptidyl derivative synthesized to mimic part of the proteinase-binding site of cystatin C (benzyloxycarbonyl-Arg-Leu-Val-Gly-diazomethane, or Z-RLVG-CHN2) also decreased PTH-stimulated osteoclast formation. In a 9-day culture, addition of cystatin C during the last 5 days was sufficient to cause substantial inhibition of osteoclast formation. Cystatin C-induced decrease of osteoclast formation was associated with enhanced number of F4/80-positive macrophages and increased mRNA expression of the macrophage receptor c-fms in the bone marrow culture. Osteoclast formation in mouse bone marrow cultures as well as in mouse spleen cell cultures, stimulated by macrophage colony-stimulating factor (M-CSF) and RANKL was also decreased by different cysteine proteinase inhibitors. In addition, cystatin C inhibited M-CSF/RANKL induction of calcitonin receptor mRNA in spleen cell cultures. The inhibitory effect by cystatin C in spleen cells was associated with decreased mRNA expression of RANK and the transcription factor NFAT2. It is concluded that cysteine proteinase inhibitors decrease formation of osteoclasts by interfering at a late stage of pre-osteoclast differentiation.
3. β-Arrestin-Biased Agonist Targeting the Brain AT1R (Angiotensin II Type 1 Receptor) Increases Aversion to Saline and Lowers Blood Pressure in Deoxycorticosterone Acetate-Salt Hypertension
Mario Zanaty, Sadashiva S Karnik, Fernando A C Seara, Kirthikaa Balapattabi, Natalia M Mathieu, Curt D Sigmund, Guorui Deng, Pablo Nakagawa, Justin L Grobe Hypertension . 2021 Feb;77(2):420-431. doi: 10.1161/HYPERTENSIONAHA.120.15793.
Activation of central AT1Rs (angiotensin type 1 receptors) is required for the increased blood pressure, polydipsia, and salt intake in deoxycorticosterone acetate (DOCA)-salt hypertension. TRV120027 (TRV027) is an AT1R-biased agonist that selectively acts through β-arrestin. We hypothesized that intracerebroventricular administration of TRV027 would ameliorate the effects of DOCA-salt. In a neuronal cell line, TRV027 induced AT1aR internalization through dynamin and clathrin-mediated endocytosis. We next evaluated the effect of chronic intracerebroventricular infusion of TRV027 on fluid intake. We measured the relative intake of water versus various saline solutions using a 2-bottle choice paradigm in mice subjected to DOCA with a concomitant intracerebroventricular infusion of either vehicle, TRV027, or losartan. Sham mice received intracerebroventricular vehicle without DOCA. TRV027 potentiated DOCA-induced water intake in the presence or absence of saline. TRV027 and losartan both increased the aversion for saline-an effect particularly pronounced for highly aversive saline solutions. Intracerebroventricular Ang (angiotensin) II, but not TRV027, increased water and saline intake in the absence of DOCA. In a separate cohort, blood pressure responses to acute intracerebroventricular injection of vehicle, TRV, or losartan were measured by radiotelemetry in mice with established DOCA-salt hypertension. Central administration of intracerebroventricular TRV027 or losartan each caused a significant and similar reduction of blood pressure and heart rate. We conclude that administration of TRV027 a selective β-arrestin biased agonist directly into the brain increases aversion to saline and lowers blood pressure in a model of salt-sensitive hypertension. These data suggest that selective activation of AT1R β-arrestin pathways may be exploitable therapeutically.
Online Inquiry
Verification code
Inquiry Basket