H-Gly-Lys-Gly-OH
Need Assistance?
  • US & Canada:
    +
  • UK: +

H-Gly-Lys-Gly-OH

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Others
Catalog number
BAT-014955
CAS number
45214-22-0
Molecular Formula
C10H20N4O4
Molecular Weight
260.29
IUPAC Name
2-[[(2S)-6-amino-2-[(2-aminoacetyl)amino]hexanoyl]amino]acetic acid
Synonyms
Glycine, glycyl-L-lysyl-; Glycyl-lysyl-glycine
Sequence
H-Gly-Lys-Gly-OH
Storage
Store at -20°C
InChI
InChI=1S/C10H20N4O4/c11-4-2-1-3-7(14-8(15)5-12)10(18)13-6-9(16)17/h7H,1-6,11-12H2,(H,13,18)(H,14,15)(H,16,17)/t7-/m0/s1
InChI Key
PDUHNKAFQXQNLH-ZETCQYMHSA-N
Canonical SMILES
C(CCN)CC(C(=O)NCC(=O)O)NC(=O)CN
1. A novel prosthetic group for site-selective labeling of peptides for positron emission tomography
Dag Erlend Olberg, Ole Kristian Hjelstuen, Magne Solbakken, Joseph Arukwe, Hege Karlsen, Alan Cuthbertson Bioconjug Chem. 2008 Jun;19(6):1301-8. doi: 10.1021/bc800007h. Epub 2008 May 29.
Efficient methodologies for the radiolabeling of peptides with [(18)F]fluoride are a prerequisite to enabling commercialization of peptide-containing radiotracers for positron emission tomography (PET) imaging. It was the purpose of this study to investigate a novel chemoselective ligation reaction comprising conjugation of an [(18)F]-N-methylaminooxy-containing prosthetic group to a functionalized peptide. Twelve derivatives of general formula R1-CO-NH-Lys-Gly-Phe-Gly-Lys-OH were synthesized where R1 was selected from a short list of moieties anticipated to be reactive toward the N-methylaminooxy group. Conjugation reactions were initially carried out with nonradioactive precursors to assess, in a qualitative manner, their general suitability for PET chemistry with only the most promising pairings progressing to full radiochemical assessment. Best results were obtained for the ligation of O-[2-(2-[(18)F]fluoroethoxy)ethyl]-N-methyl-N-hydroxylamine 18 to the maleimidopropionyl-Lys-Gly-Phe-Gly-Lys-OH precursor 10 in acetate buffer (pH 5) after 1 h at 70 degrees C. The non-decay-corrected isolated yield was calculated to be 8.5%. The most encouraging result was observed with the combination 18 and 4-(2-nitrovinyl)benzoyl-Lys-Gly-Phe-Gly-Lys-OH, 9, where the conjugation reaction proceeded rapidly to completion at 30 degrees C after only 5 min. The corresponding non-decay-corrected radiochemical yield for the isolated (18)F-labeled product 27 was 12%. The preliminary results from this study demonstrate the considerable potential of this novel strategy for the radiolabeling of peptides.
2. A Strategy for Quality Control of Vespa magnifica (Smith) Venom Based on HPLC Fingerprint Analysis and Multi-Component Separation Combined with Quantitative Analysis
Si-Tong Zhou, Kai Luan, Lian-Li Ni, Ying Wang, Shi-Meng Yuan, Yi-Hao Che, Zi-Zhong Yang, Cheng-Gui Zhang, Zhi-Bin Yang Molecules. 2019 Aug 12;24(16):2920. doi: 10.3390/molecules24162920.
As a folk medicine of the Jingpo minority in Yunnan province, the venom of Vespa magnifica has been commonly used for the treatment of rheumatoid arthritis. Quality standardization of the wasp venom is a necessary step for its pharmaceutical research and development. To control the quality of the wasp venom, a method based on high-performance liquid chromatography (HPLC) was developed for chemical fingerprint analysis. In the chromatographic fingerprinting, chemometrics procedures, including similarity analysis (SA), hierarchical clustering analysis (HCA), and principal component analysis (PCA), were applied to classify 134 batches (S1-S134) of wasp venom from different origins. The HPLC fingerprint method displayed good precision (Relative standard deviation, RSD < 0.27%), stability (in 16 h, RSD < 0.34%), and repeatability (RSD < 1.00%). Simultaneously, four compounds (VMS1, VMS2, VMS3, and VMS4) in the wasp venom were purified and identified. VMS1 was 5-hydroxytryptamine, and the other compounds were three peptides that were sequenced as follows: Gly-Arg-Pro-Hyp-Gly-Phe-Ser-Pro-Phe-Arg-Ile-Asp-NH2 (VMS2), Ile-Asn-Leu-Lys-Ala-Ile-Ala-Ala-Leu-Ala-Lys-Lys-Leu-Leu-NH2 (VMS3), and Phe-Leu-Pro-Ile-Ile-Gly-Lys-Leu-Leu-Ser-Gly-Leu-Leu-NH2 (VMS4). The quantifications for these components were 110.2 mg/g, 26.9 mg/g, 216.3 mg/g, and 58.0 mg/g, respectively. The results of this work indicated that the combination of the chemical fingerprint and quantitative analysis offers a reasonable way to evaluate the quality of wasp venom.
3. Construction of cathepsin B-responsive fluorescent probe and photosensitizer using a ferrocenyl boron dipyrromethene dark quencher
Qiong Wang, Ligang Yu, Roy C H Wong, Pui-Chi Lo Eur J Med Chem. 2019 Oct 1;179:828-836. doi: 10.1016/j.ejmech.2019.06.082. Epub 2019 Jun 29.
A ferrocenyl boron dipyrromethene (BODIPY) has been developed and utilized as a dark quencher to construct a cathepsin B-responsive fluorescent probe and photosensitizer. The smart fluorescent probe and photosensitizer (Pc-FcQ) contains a zinc(II) phthalocyanine as the fluorescent and photosensitizing unit which is conjugated to the ferrocenyl BODIPY dark quencher via a cathepsin B-cleavable peptide substrate [Gly-Phe-Leu-Gly-Lys]. The photosensitizing properties of Pc-FcQ, including fluorescence and singlet oxygen generation, are significantly quenched through energy transfer to the BODIPY unit and subsequently by the photoinduced electron transfer from the nearby ferrocenyl moiety. Upon exposure of cathepsin B in human hepatocellular carcinoma HepG cells, the fluorescence emission of Pc-FcQ could be restored, indicating the cleavage of the peptide substrate and the separation of the phthalocyanine and ferrocenyl BODIPY unit. However, the intracellular fluorescence intensity of Pc-FcQ was largely diminished after the cells were pre-treated with cathepsin B inhibitor. Its intracellular fluorescence intensity was comparable to that of the control compound in which the peptide substrate was replaced by the non-cleavable one [Gly-Gly-Gly-Gly-Lys]. The singlet oxygen generation of Pc-FcQ was also examined in HepG2 cells as reflected by the cytotoxicity assay. The Pc-FcQ exhibited higher potency when compared with the non-cleavable analogue due to the cleavage of peptide substrate and the detachment of the BODIPY dark quencher from the phthalocyanine. The activation of the Pc-FcQ was also demonstrated in tumor-bearing nude mice. After intratumoral injection of Pc-FcQ, the fluorescence intensity at the tumor region increased gradually over 10 h as a result of the detachment of the dark quencher upon the action of cathepsin B. All the results suggest that this ferrocenyl BODIPY could serve as an efficient dark quencher and the resulting Pc-FcQ could act as the cathepsin B-responsive fluorescent probe and activatable photosensitizer.
Online Inquiry
Verification code
Inquiry Basket