H-L-Phe-Oall HCl
Need Assistance?
  • US & Canada:
    +
  • UK: +

H-L-Phe-Oall HCl

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
L-Amino Acids
Catalog number
BAT-002174
Molecular Formula
C12H15NO2·HCl
Molecular Weight
241.72
IUPAC Name
prop-2-enyl (2S)-2-amino-3-phenylpropanoate;hydrochloride
Synonyms
96039-19-9; (S)-Allyl 2-amino-3-phenylpropanoate hydroChloride; H-L-Phe-Oall HCl; MFCD01074684
Appearance
White powder
Purity
≥ 99% (HPLC)
Storage
Store at 2-8 °C
InChI
InChI=1S/C12H15NO2.ClH/c1-2-8-15-12(14)11(13)9-10-6-4-3-5-7-10;/h2-7,11H,1,8-9,13H2;1H/t11-;/m0./s1
InChI Key
SNBCPTZYXIHMQG-MERQFXBCSA-N
Canonical SMILES
C=CCOC(=O)C(CC1=CC=CC=C1)N.Cl
1. Standardized Hybrid Closed-Loop System Reporting
Viral N Shah, Satish K Garg Diabetes Technol Ther. 2021 May;23(5):323-331. doi: 10.1089/dia.2020.0622. Epub 2020 Nov 25.
The hybrid closed-loop (HCL) system has been shown to improve glycemic control and reduce hypoglycemia. Optimization of HCL settings requires interpretation of the glucose, insulin, and factors affecting glucose such as food intake and exercise. To the best of our knowledge, there is no published guidance on the standardized reporting of HCL systems. Standardization of HCL reporting would make interpretation of data easy across different systems. We reviewed the literature on patient and provider perspectives on downloading and reporting glucose metric preferences. We also incorporated international consensus on standardized reporting for glucose metrics. We describe a single-page HCL data reporting, referred to here as "artificial pancreas (AP) Dashboard." We propose seven components in the AP Dashboard that can provide detailed information and visualization of glucose, insulin, and HCL-specific metrics. The seven components include (A) glucose metrics, (B) hypoglycemia, (C) insulin, (D) user experience, (E) hyperglycemia, (F) glucose modal-day profile, and (G) insight. A single-page report similar to an electrocardiogram can help providers and patients interpret HCL data easily and take the necessary steps to improve glycemic outcomes. We also describe the optimal sampling duration for HCL data download and color coding for visualization ease. We believe that this is a first step in creating a standardized HCL reporting, which may result in better uptake of the systems. For increased adoption, standardized reporting will require input from providers, patients, diabetes device manufacturers, and regulators.
2. Effect of L-arginine and L-Lysine HCl ratio on growth performance and ileum morphology of native chickens aged 2-14 weeks
Charles Venirius Lisnahan, Oktovianus R Nahak, Welsiliana Welsiliana, Lukas Pardosi Vet World. 2022 May;15(5):1365-1372. doi: 10.14202/vetworld.2022.1365-1372. Epub 2022 May 27.
Background and aim: Micronutrients such as essential amino acids in chicken feed must be balanced to promote optimal development. The balance of the amino acids arginine and lysine in chicken feed is particularly important. This study aimed to examine the effect of the ratio of L-arginine to L-Lysine HCl on growth performance and ileum morphology of native chickens aged 2-14 weeks-old. Materials and methods: One hundred and eighty 2-week-old native chickens which initial weight 78.10±4.97 g were classified into six treatments and five repetitions using a completely randomized design. Treatments were based on the ratio of arginine to lysine in the feed: T1 (0.50% L-arginine: 0.85% L-lysine HCl); T2 (0.75% L-arginine: 0.85% L-lysine HCl); T3 (1.00% L-arginine: 0.85% L-lysine HCl); T4 (0.50% L-arginine: 1.00% L-lysine HCl); T5 (0.75% L-arginine: 1.00% L-lysine HCl); and T6 (1.00% L-arginine: 1.00% L-lysine HCl). Results: Groups T3 and T6 had the highest feed consumption (42.06±0.29 and 42.78±0.72 g/bird/day, respectively), while Group T6 had the highest body weight and body weight gain rate (1505.60±103.20 kg/bird and 16.99±1.24 g/bird/day, respectively). Groups T3 and T6 also had the highest carcass weight (916.16±46.99 and 947.18±62.32 g/bird, respectively). The best feed conversion was seen for Groups T3, T5, and T6 (2.55±0.14, 2.50±0.20, and 2.53±0.19, respectively). For ileum morphometry, the highest villus height occurred in Groups T2, T3, T5, and T6 (962.80±23.31, 982.80±10.03, 972.80±18.99, and 989.80±10.69 μm, respectively); and Group T6 had the highest crypt depth and villus width (340.80±11.52 and 302.00±4.00 μm, respectively). Statistical analysis indicated significant differences among the treatment groups for all variables examined (p<0.05). Conclusion: The highest ratio of arginine-lysine was associated with the largest increase in native chicken feed consumption, body weight gain, feed conversion, and carcass weight, as well as villus height and width, and crypt depth in the ileum. Overall, an arginine-lysine ratio of 0.8-1.20 promoted optimal growth of native chickens aged 2-14 weeks. In the future, it is important to increase the arginine-lysine ratio with low feed protein levels in native chickens.
Online Inquiry
Verification code
Inquiry Basket