H-Leu-Trp-Met-Arg-OH
Need Assistance?
  • US & Canada:
    +
  • UK: +

H-Leu-Trp-Met-Arg-OH

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Others
Catalog number
BAT-014915
CAS number
67368-23-4
Molecular Formula
C28H44N8O5S
Molecular Weight
604.77
IUPAC Name
(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-4-methylpentanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-4-methylsulfanylbutanoyl]amino]-5-(diaminomethylideneamino)pentanoic acid
Synonyms
L-Arginine, L-leucyl-L-tryptophyl-L-methionyl-
Sequence
H-Leu-Trp-Met-Arg-OH
Storage
Store at -20°C
InChI
InChI=1S/C28H44N8O5S/c1-16(2)13-19(29)24(37)36-23(14-17-15-33-20-8-5-4-7-18(17)20)26(39)34-21(10-12-42-3)25(38)35-22(27(40)41)9-6-11-32-28(30)31/h4-5,7-8,15-16,19,21-23,33H,6,9-14,29H2,1-3H3,(H,34,39)(H,35,38)(H,36,37)(H,40,41)(H4,30,31,32)/t19-,21-,22-,23-/m0/s1
InChI Key
QDSRMRPAGMXZLU-UDIDDNNKSA-N
Canonical SMILES
CC(C)CC(C(=O)NC(CC1=CNC2=CC=CC=C21)C(=O)NC(CCSC)C(=O)NC(CCCN=C(N)N)C(=O)O)N
1. Characterization of the binding site on the formyl peptide receptor using three receptor mutants and analogs of Met-Leu-Phe and Met-Met-Trp-Leu-Leu
J S Mills, H M Miettinen, D Cummings, A J Jesaitis J Biol Chem. 2000 Dec 15;275(50):39012-7. doi: 10.1074/jbc.M003081200.
The formyl peptide receptor (FPR) is a chemotactic G protein-coupled receptor found on the surface of phagocytes. We have previously shown that the formyl peptide binding site maps to the membrane-spanning region (Miettinen, H. M., Mills, J. S., Gripentrog, J. M., Dratz, E. A., Granger, B. L., and Jesaitis, A. J. (1997) J. Immunol. 159, 4045-4054). Recent reports have indicated that non-formylated peptides, such as MMWLL can also activate this receptor (Chen, J., Bernstein, H. S., Chen, M., Wang, L., Ishi, M., Turck, C. W., and Coughlin, S. R. (1995) J. Biol. Chem. 270, 23398-23401.) Here we show that the selectivity for the binding of different NH(2)-terminal analogs of MMWLL or MLF can be markedly altered by mutating Asp-106 to asparagine or Arg-201 to alanine. Both D106N and R201A produced a similar change in ligand specificity, including an enhanced ability to bind the HIV-1 peptide DP178. In contrast, the mutation R205A exhibited altered specificity at the COOH terminus of fMLF, with R205A binding fMLF-O-butyl > fMLF-O-methyl > fMLF, whereas wt FPR bound fMLF > fMLF-O-methyl approximately fMLF-O-butyl. These data, taken together with our previous finding that the leucine side chain of fMLF is probably bound to FPR near FPR (93)VRK(95) (Mills, J. S., Miettinen, H. M., Barnidge, D., Vlases, M. J., Wimer-Mackin, S., Dratz, E. A., and Jesaitis, A. J. (1998) J. Biol. Chem. 273, 10428-10435.), indicate that the most likely positioning of fMLF in the binding pocket of FPR is approximately parallel to the fifth transmembrane helix with the formamide group of fMLF hydrogen-bonded to both Asp-106 and Arg-201, the leucine side chain pointing toward the second transmembrane region, and the COOH-terminal carboxyl group of fMLF ion-paired with Arg-205.
2. Apparent and standardised ileal amino acid digestibilities in heat-stressed pigs fed wheat-soybean meal diets supplemented with l-arginine and dl-methionine
Alan Valle, Miguel Cervantes, Adriana Morales, Gilberto Castillo, Estela Montoya, Jollie Caroline González-Vega, John K Htoo, Ernesto Avelar J Anim Physiol Anim Nutr (Berl). 2022 Dec 1. doi: 10.1111/jpn.13793. Online ahead of print.
Heat stress (HS) exposure may damage the small intestine epithelia of pigs affecting the digestibility and absorption of amino acids (AA). Arg and Met can enhance antioxidant and intestinal cell proliferation activity, thus supplementing them in diets might alleviate epithelial damage and correct the reduced AA digestibility. The effect of adding extra l-Arg and dl-Met to diets on the apparent (AID) and standardised ileal digestibility (SID) of AA was analysed in a 10-day experiment conducted with 10 ileal-cannulated HS pigs (25.3 ± 2.4 kg body weight). The pigs were divided into two treatments: Control, wheat-soybean meal diet supplemented with l-Lys, l-Thr, dl-Met and l-Trp; and control diet plus 0.20% l-Arg and 0.20% dl-Met (Arg + Met). Following an 8-day diet adaptation period, ileal digesta was continuously collected for 12 h, starting at 0700, on Days 9 and 10. All pigs were daily exposed to 29.6-36.1°C; ileal temperature was continuously monitored at 15-min intervals. Feed was provided twice a day. The ileal temperature ranged from 40.3 to 41.5°C. Daily ileal outflow of His, Ile, Leu, Phe, Thr, Ser and Tyr decreased (p < 0.05), and that of Arg, Val and Pro tended to decrease (p < 0.10) in the Arg + Met pigs. The AID of Arg, His, Met, Thr and Tyr, and the SID of His, Met, and Thr increased in pigs fed the Arg + Met diet (p < 0.05). Thr and Val had the lowest AID values whereas Arg, Met, and Lys had the highest values. Arg (r = 0.64) and Met (r = 0.84) intake were highly correlated with their AID values; Met intake was highly correlated with its SID value (r = 0.72). Valine and Arg had the lowest whereas Arg had the highest SID values. In conclusion, supplementing l-Arg and dl-Met above the requirement decreases the ileal outflow of several AA, and increases the AID and SID of some essential AA in HS pigs.
3. Purification, Identification, Activity Evaluation, and Stability of Antioxidant Peptides from Alcalase Hydrolysate of Antarctic Krill ( Euphausia superba) Proteins
Shuang-Yi Zhang, Guo-Xu Zhao, Shi-Kun Suo, Yu-Mei Wang, Chang-Feng Chi, Bin Wang Mar Drugs. 2021 Jun 17;19(6):347. doi: 10.3390/md19060347.
For utilizing the largest source of marine proteins, Antarctic krill (Euphausia superba) proteins were defatted and hydrolyzed separately using pepsin, alcalase, papain, trypsin, and netrase, and alcalase hydrolysate (EPAH) showed the highest DPPH radical (DPPH·) and hydroxyl radical (HO·) scavenging activity among five hydrolysates. Using ultrafiltration and chromatography methods, fifteen antioxidant peptides were purified from EPAH and identified as Asn-Gln-Met (NQM), Trp-Phe-Pro-Met (WFPM), Gln-Asn-Pro-Thr (QNPT), Tyr-Met-Asn-Phe (YMNF), Ser-Gly-Pro-Ala (SGPA), Ser-Leu-Pro-Tyr (SLPY), Gln-Tyr-Pro-Pro-Met-Gln-Tyr (QYPPMQY), Glu-Tyr-Glu-Ala (EYEA), Asn-Trp-Asp-Asp-Met-Arg-Ile-Val-Ala-Val (NWDDMRIVAV), Trp-Asp-Asp-Met-Glu-Arg-Leu-Val-Met-Ile (WDDMERLVMI), Asn-Trp-Asp-Asp-Met-Glu-Pro-Ser-Phe (NWD-DMEPSF), Asn-Gly-Pro-Asp-Pro-Arg-Pro-Ser-Gln-Gln (NGPDPRPSQQ), Ala-Phe-Leu-Trp-Asn (AFLWA), Asn-Val-Pro-Asp-Met (NVPDM), and Thr-Phe-Pro-Ile-Tyr-Asp-Tyr-Pro-Gln (TFPIYDPQ), respectively, using a protein sequencer and ESI/MS. Among fifteen antioxidant peptides, SLPY, QYPPMQY and EYEA showed the highest scavenging activities on DPPH· (EC50 values of 1.18 ± 0.036, 1.547 ± 0.150, and 1.372 ± 0.274 mg/mL, respectively), HO· (EC50 values of 0.826 ± 0.027, 1.022 ± 0.058, and 0.946 ± 0.011 mg/mL, respectively), and superoxide anion radical (EC50 values of 0.789 ± 0.079, 0.913 ± 0.007, and 0.793 ± 0.056 mg/mL, respectively). Moreover, SLPY, QYPPMQY and EYEA showed strong reducing power, protective capability against H2O2-damaged plasmid DNA, and lipid peroxidation inhibition ability. Furthermore, SLPY, QYPPMQY, and EYEA had high stability under temperatures lower than 80 °C, pH values ranged from 6-8, and simulated GI digestion for 180 min. The results showed that fifteen antioxidant peptides from alcalase hydrolysate of Antarctic krill proteins, especially SLPY, QYPPMQY and EYEA, might serve as effective antioxidant agents applied in food and health products.
Online Inquiry
Verification code
Inquiry Basket