2. Sodium butyrate ameliorates deoxycorticosterone acetate/salt-induced hypertension and renal damage by inhibiting the MR/SGK1 pathway
Chunying Wu, Zhida Chen, Linlin Zhang, Yeyan Zhu, Mokan Deng, Cailin Huang, Yuting Liu, Qing Zhu, Lei Wang Hypertens Res. 2021 Feb;44(2):168-178. doi: 10.1038/s41440-020-00548-3. Epub 2020 Sep 9.
Our recent work demonstrates that infusion of sodium butyrate (NaBu) into the renal medulla blunts angiotensin II-induced hypertension and improves renal injury. The present study aimed to test whether oral administration of NaBu attenuates salt-sensitive hypertension in deoxycorticosterone acetate (DOCA)/salt-treated rats. Uninephrectomized male Sprague-Dawley (SD) rats were treated with DOCA pellets (150 mg/rat) plus 1% NaCl drinking water for 2 weeks. Animals received oral administration of NaBu (1 g/kg) or vehicle once per day. Our results showed that NaBu administration significantly attenuated DOCA/salt-increased mean arterial pressure from 156 ± 4 mmHg to 136 ± 1 mmHg. DOCA/salt treatment markedly enhanced renal damage as indicated by an increased ratio of kidney weight/body weight, elevated urinary albumin, extensive fibrosis, and inflammation, whereas kidneys from NaBu-treated rats exhibited a significant reduction in these renal damage responses. Compared to the DOCA/salt group, the DOCA/salt-NaBu group had ~30% less salt water intake and decreased Na+ and Cl- excretion in urine but no alteration in 24-h urine excretion. Mechanistically, NaBu inhibited the protein levels of several sodium transporters stimulated by DOCA/salt in vivo, such as βENaC, γENaC, NCC, and NKCC-2. Further examination showed that NaBu downregulated the expression of mineralocorticoid receptor (MR) and serum and glucocorticoid-dependent protein kinase 1 (SGK1) in DOCA/salt-treated rats or aldosterone-treated human renal tubular duct epithelial cells. These results provide evidence that NaBu may attenuate DOCA/salt-induced hypertension and renal damage by inhibiting the MR/SGK1 pathway.
3. Tri-soft shell technique
Steve A Arshinoff, Richard Norman J Cataract Refract Surg. 2013 Aug;39(8):1196-203. doi: 10.1016/j.jcrs.2013.06.011.
Soft-shell techniques exist for lower viscosity dispersive with higher viscosity cohesive ophthalmic viscosurgical devices (OVDs) (soft-shell technique [SST]), viscoadaptive OVDs with balanced salt solution (ultimate soft-shell technique), intraoperative floppy-iris syndrome (soft-shell bridge), and many specific modifications for disinserted zonular fibers, frayed iris strands, Fuchs endothelial dystrophy, small holes in the posterior capsule with protruding vitreous, capsular dye use, and others. Soft-shell techniques exist because it is rheologically impossible to control the surgical environment with a single OVD as well as with an ordered combination of rheologically different OVDs. Surgeons frequently confuse these techniques because of their multitude. This paper unifies all SSTs into a single improved tri-soft shell technique (TSST), from which basic specific applications to unusual circumstances are simple and intuitive. As shown with previous SSTs, the TSST allows surgeons to perform complex tasks with greater surgical facility and to protect endothelial cells better than with single OVDs.