HIV Protease Substrate VI
Need Assistance?
  • US & Canada:
    +
  • UK: +

HIV Protease Substrate VI

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

HIV Protease Substrate VI is a sensitive chromogenic substrate for both HIV-1 and HIV-2 proteases.

Category
Others
Catalog number
BAT-014438
CAS number
130877-92-8
Molecular Formula
C40H66N12O11
Molecular Weight
891.04
IUPAC Name
(4S)-4-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-5-(diaminomethylideneamino)pentanoyl]amino]-3-methylbutanoyl]amino]hexanoyl]amino]-3-(4-nitrophenyl)propanoyl]amino]-5-[[(2S)-1-[[(2S)-1-amino-1-oxohexan-2-yl]amino]-1-oxopropan-2-yl]amino]-5-oxopentanoic acid
Synonyms
H-Arg-Val-Nle-p-nitro-Phe-Glu-Ala-Nle-NH2; L-arginyl-L-valyl-L-norleucyl-4-nitro-L-phenylalanyl-L-alpha-glutamyl-L-alanyl-L-norleucinamide; L-Norleucinamide, L-arginyl-L-valyl-L-norleucyl-4-nitro-L-phenylalanyl-L-α-glutamyl-L-alanyl-
Appearance
White Powder
Purity
≥95%
Density
1.4±0.1 g/cm3
Sequence
RV-Nle-F(4-NO2)-EA-Nle-NH2
Storage
Store at -20°C
Solubility
Soluble in DMSO
InChI
InChI=1S/C40H66N12O11/c1-6-8-12-27(33(42)55)47-34(56)23(5)46-36(58)29(18-19-31(53)54)48-38(60)30(21-24-14-16-25(17-15-24)52(62)63)50-37(59)28(13-9-7-2)49-39(61)32(22(3)4)51-35(57)26(41)11-10-20-45-40(43)44/h14-17,22-23,26-30,32H,6-13,18-21,41H2,1-5H3,(H2,42,55)(H,46,58)(H,47,56)(H,48,60)(H,49,61)(H,50,59)(H,51,57)(H,53,54)(H4,43,44,45)/t23-,26-,27-,28-,29-,30-,32-/m0/s1
InChI Key
SKVRTIXPQZQNMQ-APYWWOEASA-N
Canonical SMILES
CCCCC(C(=O)N)NC(=O)C(C)NC(=O)C(CCC(=O)O)NC(=O)C(CC1=CC=C(C=C1)[N+](=O)[O-])NC(=O)C(CCCC)NC(=O)C(C(C)C)NC(=O)C(CCCN=C(N)N)N
1. HIV-1 Protease in the Fission Yeast Schizosaccharomyces pombe
Zsigmond Benko, Robert T Elder, Ge Li, Dong Liang, Richard Y Zhao PLoS One. 2016 Mar 16;11(3):e0151286. doi: 10.1371/journal.pone.0151286. eCollection 2016.
Background: HIV-1 protease (PR) is an essential viral enzyme. Its primary function is to proteolyze the viral Gag-Pol polyprotein for production of viral enzymes and structural proteins and for maturation of infectious viral particles. Increasing evidence suggests that PR cleaves host cellular proteins. However, the nature of PR-host cellular protein interactions is elusive. This study aimed to develop a fission yeast (Schizosaccharomyces pombe) model system and to examine the possible interaction of HIV-1 PR with cellular proteins and its potential impact on cell proliferation and viability. Results: A fission yeast strain RE294 was created that carried a single integrated copy of the PR gene in its chromosome. The PR gene was expressed using an inducible nmt1 promoter so that PR-specific effects could be measured. HIV-1 PR from this system cleaved the same indigenous viral p6/MA protein substrate as it does in natural HIV-1 infections. HIV-1 PR expression in fission yeast cells prevented cell proliferation and induced cellular oxidative stress and changes in mitochondrial morphology that led to cell death. Both these PR activities can be prevented by a PR-specific enzymatic inhibitor, indinavir, suggesting that PR-mediated proteolytic activities and cytotoxic effects resulted from enzymatic activities of HIV-1 PR. Through genome-wide screening, a serine/threonine kinase, Hhp2, was identified that suppresses HIV-1 PR-induced protease cleavage and cell death in fission yeast and in mammalian cells, where it prevented PR-induced apoptosis and cleavage of caspase-3 and caspase-8. Conclusions: This is the first report to show that HIV-1 protease is functional as an enzyme in fission yeast, and that it behaves in a similar manner as it does in HIV-1 infection. HIV-1 PR-induced cell death in fission yeast could potentially be used as an endpoint for mechanistic studies, and this system could be used for developing a high-throughput system for drug screenings.
2. Whiskers-less HIV-protease: a possible way for HIV-1 deactivation
Mohammad Reza Dayer, Mohammad Saaid Dayer J Biomed Sci. 2013 Sep 12;20(1):67. doi: 10.1186/1423-0127-20-67.
Background: Among viral enzymes, the human HIV-1 protease comprises the most interesting target for drug discovery. There are increasing efforts focused on designing more effective inhibitors for HIV-1 protease in order to prevent viral replication in AIDS patients. The frequent and continuous mutation of HIV-1 protease gene creates a formidable obstacle for enzyme inhibition which could not be overcome by the traditional single drug therapy. Nowadays, in vitro and in silico studies of protease inhibition constitute an advanced field in biological researches. In this article, we tried to simulate protease-substrate complexes in different states; a native state and states with whiskers deleted from one and two subunits. Molecular dynamic simulations were carried out in a cubic box filled with explicit water at 37°C and in 1atomsphere of pressure. Results: Our results showed that whisker truncation of protease subunits causes the dimer structure to decrease in compactness, disrupts substrate-binding site interactions and changes in flap status simultaneously. Conclusions: Based on our findings we claim that whisker truncation even when applied to a single subunit, threats dimer association which probably leads to enzyme inactivation. We may postulate that inserting a gene to express truncated protease inside infected cells can interfere with protease dimerization. The resulted proteases would presumably have a combination of native and truncated subunits in their structures which exert no enzyme activities as evidenced by the present work. Our finding may create a new field of research in HIV gene therapy for protease inhibition, circumventing problems of drug resistance.
3. HIV-1 protease-substrate coevolution in nelfinavir resistance
Madhavi Kolli, Ayşegül Ozen, Nese Kurt-Yilmaz, Celia A Schiffer J Virol. 2014 Jul;88(13):7145-54. doi: 10.1128/JVI.00266-14. Epub 2014 Apr 9.
Resistance to various human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. The virus accumulates mutations within the protease (PR) that render the PIs less potent. Occasionally, Gag sequences also coevolve with mutations at PR cleavage sites contributing to drug resistance. In this study, we investigated the structural basis of coevolution of the p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations by determining crystal structures of wild-type and NFV-resistant HIV-1 protease in complex with p1-p6 substrate peptide variants with L449F and/or S451N. Alterations of residue 30's interaction with the substrate are compensated by the coevolving L449F and S451N cleavage site mutations. This interdependency in the PR-p1-p6 interactions enhances intermolecular contacts and reinforces the overall fit of the substrate within the substrate envelope, likely enabling coevolution to sustain substrate recognition and cleavage in the presence of PR resistance mutations. Importance: Resistance to human immunodeficiency virus type 1 (HIV-1) protease inhibitors challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. Mutations in HIV-1 protease selected under the pressure of protease inhibitors render the inhibitors less potent. Occasionally, Gag sequences also mutate and coevolve with protease, contributing to maintenance of viral fitness and to drug resistance. In this study, we investigated the structural basis of coevolution at the Gag p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations. Our structural analysis reveals the interdependency of protease-substrate interactions and how coevolution may restore substrate recognition and cleavage in the presence of protease drug resistance mutations.
Online Inquiry
Verification code
Inquiry Basket