1. Protective effect of human serum amyloid P on CCl4-induced acute liver injury in mice
Min Cong, et al. Int J Mol Med. 2017 Aug;40(2):454-464. doi: 10.3892/ijmm.2017.3028. Epub 2017 Jun 14.
Human serum amyloid P (hSAP), a member of the pentraxin family, inhibits the activation of fibrocytes in culture and inhibits experimental renal, lung, skin and cardiac fibrosis. As hepatic inflammation is one of the causes of liver fibrosis, in the present study, we investigated the hepatoprotective effects of hSAP against carbon tetrachloride (CCl4)-induced liver injury. Our data indicated that hSAP attenuated hepatic histopathological abnormalities and significantly decreased inflammatory cell infiltration and pro-inflammatory factor expression. Moreover, CCl4-induced apoptosis in the mouse liver was inhibited by hSAP, as measured by terminal-deoxynucleotidyl transferase mediated nick-end labeling (TUNEL) assay and cleaved caspase-3 expression. hSAP significantly restored the expression of B cell lymphoma/leukemia (Bcl)-2 and suppressed the expression of Bcl-2-associated X protein (Bax) in vivo. The number of hepatocytes in early apoptosis stained with Annexin V was significantly reduced by 28-30% in the hSAP treatment group compared with the CCl4 group, and the expression of Bcl-2 was increased, whereas the expression of Bax and cleaved caspase-3 were significantly inhibited in the hSAP pre-treatment group compared with the CCl4 group. hSAP administration also inhibited the migration and activation of hepatic stellate cells (HSCs) in CCl4-injured liver and suppressed the activation of isolated primary HSCs induced by transforming growth factor (TGF)-β1 in vitro. Collectively, these findings suggest that hSAP exerts a protective effect againts CCl4-induced hepatic injury by suppressing the inflammatory response and hepatocyte apoptosis, potentially by inhibiting HSC activation.
2. A self-assembled DNA-nanoparticle with a targeting peptide for hypoxia-inducible gene therapy of ischemic stroke
Jungju Oh, Jaewon Lee, Chunxian Piao, Ji Hoon Jeong, Minhyung Lee Biomater Sci. 2019 Apr 23;7(5):2174-2190. doi: 10.1039/c8bm01621f.
A self-assembled nanoparticle composed of hypoxia-specific anti-RAGE peptide (HSAP), heme oxygenase-1 plasmid (pHO1), and deoxycholate-conjugated polyethylenimine-2k (DP2k) was developed for ischemic stroke therapy. RAGE is over-expressed and induces inflammation in the ischemic brain. To inhibit RAGE-mediated signal transduction, HSAP was produced by recombinant DNA technology, based on the RAGE-binding domain of high mobility group box-1. Because of the specific binding to RAGE, the nanoparticle with HSAP (HSAP-NP) may have dual roles as a cytoprotective reagent and a specific ligand to RAGE for receptor-mediated transfection. As a cytoprotective reagent, the HSAP-NP reduced RAGE expression on the surface of the brain cells by inhibiting the positive feedback of RAGE-mediated signal transduction. As a result, inflammation, apoptosis, and reactive oxygen species were decreased in hypoxic cells. As a gene carrier, HSAP-NP showed a higher transfection efficiency than polyethylenimine-25k, DP2k, and Lipofectamine. Particularly, HSAP-NP enhanced gene delivery to hypoxic cells. In the stroke animal models, HSAP-NP reduced the levels of RAGE, inducible nitric oxide synthase, and inflammation. Additionally, HSAP-NP with pHO1 (HSAP-NP/pHO1) increased HO1 expression in the ischemic brain. Gene expression was higher in hypoxia-inducible factor-1α (HIF-1α)-positive cells than in HIF-1α-negative cells, suggesting that HSAP-NP delivered the genes to ischemic tissues more efficiently. Cell death and infarct volume in the stroke models were significantly decreased by HSAP-NP/pHO1 compared with HSAP alone or the DP2k/pHO1 complex. Therefore, HSAP-NP may be a useful gene and peptide therapy system for stroke therapy with dual functions of hypoxia-specific gene delivery and cytoprotective effects.
3. Binding of human serum amyloid P component (hSAP) to human neutrophils
P Landsmann, O Rosen, M Pontet, M Pras, D Levartowsky, E G Shephard, M Fridkin Eur J Biochem. 1994 Aug 1;223(3):805-11. doi: 10.1111/j.1432-1033.1994.tb19056.x.
Human serum amyloid P component (hSAP) and human C-reactive protein (hCRP) are normal serum constituents related to the pentraxin family of plasma proteins. hSAP has morphological and immunochemical identity and extensive sequence similarity to the amyloid P (AP) component found in normal tissues and particularly in amyloid deposits. hCRP and its proteolytic products have been previously shown to bind and to interact with various types of human leukocytes. Binding-displacement experiments with 125I-labeled hSAP and hCRP show that both proteins have specific high-affinity binding sites on normal human polymorphonuclear leukocytes (PMN) and each can compete efficiently with the binding of the other. Scatchard analysis of hSAP-displacement curves reveals a heterogeneous population of hSAP-binding sites existing on the PMN cells, among them about 300,000 low-affinity binding sites with Kd < or = 5 x 10(-6) M and about 30,000 high-affinity binding sites with Kd < or = 5 x 10(-8) M. hAP was found to be degraded by enzymes from human neutrophils to yield a mixture of low-molecular-mass peptides, similarly to the case of CRP reported previously. The binding of hSAP can be efficiently inhibited by this peptide mixture. The results suggest that both hCRP and hSAP, together with related peptides, may participate in vivo in an unknown mechanism of regulation of human neutrophils.