1. An analog of the host-defense peptide hymenochirin-1B with potent broad-spectrum activity against multidrug-resistant bacteria and immunomodulatory properties
Milena Mechkarska, Manju Prajeep, Gordana D Radosavljevic, Ivan P Jovanovic, Amna Al Baloushi, Agnes Sonnevend, Miodrag L Lukic, J Michael Conlon Peptides. 2013 Dec;50:153-9. doi: 10.1016/j.peptides.2013.10.015. Epub 2013 Oct 27.
Hymenochirin-1B (IKLSPETKDN(10)LKKVLKGAIK(20)GAIAVAKMV.NH2) is a cationic, amphipathic, α-helical, host-defense peptide, first isolated from skin secretions of the Congo clawed frog Hymenochirus boettgeri (Pipidae). Structure-activity relationships were investigated by synthesizing analogs in which the Pro(5), Glu(6) and Asp(9) on the hydrophilic face of the α-helix are substituted by one or more l-lysine or d-lysine residues. Although replacement with l-lysine generates analogs with increased antimicrobial potency against a range of Gram-positive and Gram-negative bacteria (up to 8-fold), the peptides are more hemolytic. Increasing the cationicity of hymenochirin-1B while reducing the helicity by substitutions with d-lysine generates analogs that are between 2 and 8 fold more potent than the native peptide and are equally or less hemolytic. [E6k,D9k]hymenochirin-1B represents a candidate for drug development as it shows high potency against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and a range of Gram-negative bacteria, including multidrug-resistant strains of Acinetobacter baumannii and Stenotrophomonas maltophilia (MIC in the range 0.8-3.1 μM) and NDM-1 carbapenemase-producing clinical isolates of Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae and Citrobacter freundii (MIC in the range 3.1-6.25 μM), and low hemolytic activity (LC50=302 μM). [E6k,D9k]hymenochirin-1B, at a concentration of 2.5 μM, significantly (P<0.05) stimulates the production of the anti-inflammatory cytokines IL-4 and IL-10 by human peripheral blood mononuclear cells but is without significant effect on production of the pro-inflammatory cytokines TNF-α and IL-17.
2. Host-defense peptides from skin secretions of the tetraploid frogs Xenopus petersii and Xenopus pygmaeus, and the octoploid frog Xenopus lenduensis (Pipidae)
Jay D King, Milena Mechkarska, Laurent Coquet, Jérôme Leprince, Thierry Jouenne, Hubert Vaudry, Koji Takada, J Michael Conlon Peptides. 2012 Jan;33(1):35-43. doi: 10.1016/j.peptides.2011.11.015. Epub 2011 Nov 22.
Peptidomic analysis of norepinephrine-stimulated skin secretions led to the identification of host-defense peptides belonging to the magainin, peptide glycine-leucine-amide (PGLa), and caerulein precursor fragment (CPF) families from the tetraploid frogs, Xenopus petersii (Peters' clawed frog) and Xenopus pygmaeus (Bouchia clawed frog), and the octoploid frog Xenopus lenduensis (Lendu Plateau clawed frog). Xenopsin-precursor fragment (XPF) peptides were not detected. The primary structures of the antimicrobial peptides from X. petersii demonstrate a close, but not conspecific relationship, with Xenopus laevis whereas the X. pygmaeus peptides show appreciable variation from previously characterized orthologs from other Xenopus species. Polyploidization events within the Xenopodinae (Silurana+Xenopus) are associated with extensive gene silencing (nonfunctionization) but unexpectedly the full complement of four PGLa paralogs were isolated from X. lenduendis secretions. Consistent with previous data, the CPF peptides showed the highest growth-inhibitory activity against bacteria with CPF-PG1 (GFGSLLGKALKIGTNLL.NH(2)) from X. pygmaeus combining high antimicrobial potency against Staphylococcus aureus (MIC=6 μM) with relatively low hemolytic activity (LC(50)=145 μM).
3. Characterization of the host-defense peptides from skin secretions of Merlin's clawed frog Pseudhymenochirus merlini: insights into phylogenetic relationships among the Pipidae
J Michael Conlon, Manju Prajeep, Milena Mechkarska, Laurent Coquet, Jérôme Leprince, Thierry Jouenne, Hubert Vaudry, Jay D King Comp Biochem Physiol Part D Genomics Proteomics. 2013 Dec;8(4):352-7. doi: 10.1016/j.cbd.2013.10.002. Epub 2013 Oct 12.
The family Pipidae comprises the genera Hymenochirus, Pipa, Pseudhymenochirus, Silurana, and Xenopus but phylogenetic relationships within the family are unclear. Peptidomic analysis of norepinephrine-stimulated skin secretions from Pseudhymenochirus merlini Chabanaud, 1920, the single species within the genus Pseudhymenochirus, led to identification of 13 host-defense peptides with antimicrobial activity. Two peptides (hymenochirin-1Pa and -1Pb) show structural similarity to hymenochirin-1B from Hymenochirus boettgeri and eight peptides (hymenochirin-5Pa, -5Pb, -5Pc, -5Pd, -5Pe, -5Pf, 5Pg and -5Ph) are structurally similar to each other and to hymenochirin-5B from H. boettgeri. Two peptides differing by a single amino acid (IKIPSFFRNILKKVGKEAVSLM/I AGALKQS), termed pseudhymenochirin-1Pa and -1Pb, and pseudhymenochirin-2Pa (GIFPIFAKLLGKVIKVASSLISKGRTE) do not resemble host-defense peptides previously isolated from pipid frogs. Hymenochirin-5Pe was the most abundant peptide in the secretions and hymenochirin-1Pa the most potent against Staphylococcus aureus (MIC=2.5μM) and Escherichia coli (MIC=10μM). The data support a close phylogenetic relationship between Hymenochirus and Pseudhymenochirus that is distinct from the Xenopodinae (Xenopus+Silurana) clade with Pipa sister-group to all other extant pipids.