Need Assistance?
  • US & Canada:
    +
  • UK: +

Ib-AMP4

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Ib-AMP4 is an antibacterial peptide isolated from Impatiens balsamina. It has activity against gram-positive bacteria, gram-negative bacteria and fungi.

Category
Functional Peptides
Catalog number
BAT-012488
Synonyms
IBAMP4; Basic peptide AMP4; Gln-Trp-Gly-Arg-Arg-Cys-Cys-Gly-Trp-Gly-Pro-Gly-Arg-Arg-Tyr-Cys-Arg-Arg-Trp-Cys
Sequence
QWGRRCCGWGPGRRYCRRWC
1. Ib-AMP4 insertion causes surface rearrangement in the phospholipid bilayer of biomembranes: Implications from quartz-crystal microbalance with dissipation
Xiaobo Fan, Agatha Korytowski, Ali Makky, Motomu Tanaka, Michael Wink Biochim Biophys Acta Biomembr. 2018 Feb;1860(2):617-623. doi: 10.1016/j.bbamem.2017.10.025. Epub 2017 Oct 26.
Most antimicrobial peptides exert their rapid bactericidal activity through a unique mechanism of bacterial membrane disruption. However, the molecular events that underlie this mechanism remain partly unresolved. In this study, the frequency shift (ΔF) obtained through quartz-crystal microbalance with dissipation (QCM-D) indicated that the initial binding of Ib-AMP4 within the lipid membrane started at a critical Ib-AMP4 concentration that exceeded 100μg/ml. Circular dichroism measurements provided evidence that Ib-AMP4 occurs in a β-sheet configuration which is adapted for insertion into the lipid membrane. Monolayer experiments and the value of dissipation alteration (ΔD) obtained through QCM-D showed that the pressure increased within the phospholipid bilayer upon peptide insertion, and the increase in pressure subsequently forced the bilayer to wrinkle and form pores. However, D continued to increase, indicating that the membrane surface underwent a dramatic morphological transition: the membrane surface likely became porous and uneven as Ib-AMP4 projected from the external surface of the lipid bilayer. Intensive peptide insertion, however, soon plateaued 1min after the addition of Ib-AMP4. This behaviour corresponded with the results of bactericidal kinetics and liposome leakage assays. A sudden decrease in D accompanied by a negligible decrease in F occurred after replacing the Ib-AMP4 solution with HEPES buffer. This result implied that the bilayer surface rearranged and that poration and wrinkling decreased without further peptide insertion. Transmission electron microscopy results indicated that pore formation occurred during Ib-AMP4 insertion but eventually subsided. Therefore, the mode of action of AMP in bacterial membranes could be elucidated through QCM-D.
2. Recombinant production of Trx-Ib-AMP4 and Trx-E50-52 antimicrobial peptides and antimicrobial synergistic assessment on the treatment of methicillin-resistant Staphylococcus aureus under in vitro and in vivo situations
Parastu Satei, Ehsanollah Ghaznavi-Rad, Shohreh Fahimirad, Hamid Abtahi Protein Expr Purif. 2021 Dec;188:105949. doi: 10.1016/j.pep.2021.105949. Epub 2021 Jul 26.
Purpose: The production of alternative novel antimicrobial agents is considered an efficient way to cope with multidrug resistance among pathogenic bacteria. E50-52 and Ib-AMP4 antimicrobial peptides (AMPs) have illustrated great proven antibacterial effects. The aim of this study was recombinant production of these AMPs and investigation of their synergistic effects on methicillin-resistant Staphylococcus aureus (MRSA). Method: At first, the codon optimized sequences of the Ib-AMP4 (UniProt: 024006 (PRO_0000020721), and E50-52 (UniProtKB: P85148) were individually ligated into the pET-32α vector and transformed into E. coli. After the optimization of production and purification steps, the MIC (Minimum inhibitory concentration), time kill and growth kinetic tests of recombinant proteins were determined against MRSA. Finally, the in vivo wound healing efficiency was tested. Results and conclusion: The recorded MIC of recombinant Trx-Ib-AMP4, Trx-E50-52 against MRSA bacterium were 0.375 and 0.0875 mg/mL respectively. The combination application of the produced AMPs by the checkerboard method confirmed their synergic activity. The results of the time-kill showed sharply decrease of the number of viable cells with over five time reductions in log10 CFU/mL by the combination of Trx-E50-52 and Trx-IbAMP4 at 2 × MIC within 240 min. The growth kinetic results confirmed the combination of Trx-E50-52 and Trx-IbAMP4 had much greater success in the reduction of over 50 % of MRSA suspensions' turbidity within the first hour. Wound healing assay and histological analysis of infected mice treated with Trx-Ib-AMP4 or Trx-E50-52 compared with those treated with a combination of Trx-Ib-AMP4 and Trx-E50-52 showed significant synergic effects.
3. Ib-AMP4 antimicrobial peptide as a treatment for skin and systematic infection of methicillin-resistant Staphylococcus aureus (MRSA)
Samira Sadelaji, Ehsanollah Ghaznavi-Rad, Shabnam Sadoogh Abbasian, Shohreh Fahimirad, Hamid Abtahi Iran J Basic Med Sci. 2022 Feb;25(2):232-238. doi: 10.22038/IJBMS.2022.61043.13508.
Objectives: Antimicrobial peptide compounds (AMPs) play important roles in the immune system. They also exhibit significant anti-tumor and antibacterial properties. Most AMPs are cationic and are able to bind bacterial cell membranes through electrostatic affinity. Ib-AMP4 is a plant-derived AMP that exerts rapid bactericidal functions. In the present study, the antibacterial efficiency of the produced recombinant Ib-AMP4 in elimination of Methicillin-resistant Staphylococcus aureus (MRSA) bacterial infection, was investigated under in vitro and in vivo situations. Materials and methods: The synthesized Escherichia coli codon-optimized gene sequences of the Ib-AMP4 were expressed in E. coli BL21 (DE3) pLysS. The recombinant Ib-AMP4 was purified and refolding conditions were optimized. The antibacterial efficiency of the refolded peptide against MRSA was tested under in vivo and in vitro situations for treatment of skin and systematic infection of MRSA in a mouse model. Results: Antibacterial assays confirmed the antibacterial function of Ib-AMP4 against MRSA. SEM results proved the destructive effects of applying Ib-AMP4 on MRSA biomembrane. Time-kill curve and growth kinetic assay illustrated rapid antibacterial activity of the produced Ib-AMP4. Moreover, Ib-AMP4 showed significant infection treatment ability in a mouse model and all infected mice receiving Ib-AMP4 protein survived and there was no trace of bacteria in their blood samples. Conclusion: The results confirmed the rapid antibacterial potential of the produced recombinant Ib-AMP4 to be used for efficient treatment of MRSA infection.
Online Inquiry
Verification code
Inquiry Basket