L-Asparagine β-naphthylamide
Need Assistance?
  • US & Canada:
    +
  • UK: +

L-Asparagine β-naphthylamide

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
L-Amino Acids
Catalog number
BAT-005854
CAS number
3313-39-1
Molecular Formula
C14H15N3O2
Molecular Weight
257.29
L-Asparagine β-naphthylamide
IUPAC Name
(2S)-2-amino-N-naphthalen-2-ylbutanediamide
Synonyms
H-Asn-βNA
Purity
95%
Storage
Store at 2-8°C
InChI
InChI=1S/C14H15N3O2/c15-12(8-13(16)18)14(19)17-11-6-5-9-3-1-2-4-10(9)7-11/h1-7,12H,8,15H2,(H2,16,18)(H,17,19)/t12-/m0/s1
InChI Key
LMENXDIQSZMBBL-LBPRGKRZSA-N
Canonical SMILES
C1=CC=C2C=C(C=CC2=C1)NC(=O)C(CC(=O)N)N
1.Monomers of the NhaA Na+/H+ antiporter of Escherichia coli are fully functional yet dimers are beneficial under extreme stress conditions at alkaline pH in the presence of Na+ or Li+.
Rimon A1, Tzubery T, Padan E. J Biol Chem. 2007 Sep 14;282(37):26810-21. Epub 2007 Jul 17.
NhaA, the Na(+)/H(+) antiporter of Escherichia coli, exists in the native membrane as a homodimer of which two monomers have been suggested to be attached by a beta-hairpin at the periplasmic side of the membrane. Constructing a mutant deleted of the beta-hairpin, NhaA/Delta(Pro(45)-Asn(58)), revealed that in contrast to the dimeric mobility of native NhaA, the mutant has the mobility of a monomer in a blue native gel. Intermolecular cross-linking that monitors dimers showed that the mutant exists only as monomers in the native membrane, proteoliposomes, and when purified in beta-dodecyl maltoside micelles. Furthermore, pull-down experiments revealed that, whereas as expected for a dimer, hemagglutinin-tagged wild-type NhaA co-purified with His-tagged NhaA on a Ni(2+)-NTA affinity column, a similar version of the mutant did not. Remarkably, under routine stress conditions (0.1 m LiCl, pH 7 or 0.6 m NaCl, pH 8.3), the monomeric form of NhaA is fully functional.
2.Characterization of Na,K-ATPase and H,K-ATPase enzymes with glycosylation-deficient beta-subunit variants by voltage-clamp fluorometry in Xenopus oocytes.
Dürr KL1, Tavraz NN, Zimmermann D, Bamberg E, Friedrich T. Biochemistry. 2008 Apr 8;47(14):4288-97. doi: 10.1021/bi800092k. Epub 2008 Mar 15.
The role of N-linked glycosylation of beta-subunits in the functional properties of the oligomeric P-type ATPases Na,K- and H,K-ATPase has been examined by expressing glycosylation-deficient Asn-to-Gln beta-variants in Xenopus oocytes. For both ATPases, the absence of the huge N-linked oligosaccharide moiety on the beta-subunit does not affect alpha/beta coassembly, plasma membrane delivery or functional activity of the holoenzyme. Whereas this is in line with several previous glycosylation studies on Na,K-ATPase, this is the first report showing that the cell surface delivery and enzymatic activity of the gastric H,K-ATPase is unaffected by the lack of N-linked glycosylation. Sulfhydryl-specific labeling of introduced cysteine reporter sites with the environmentally sensitive fluorophore tetramethylrhodamine-6-maleimide (TMRM) upon expression in Xenopus oocytes enabled us to further investigate potential effects of the N-glycans on more subtle enzymatic properties, like the distribution between E 1P/E 2P states of the catalytic cycle and the kinetics of the E 1P/E 2P conformational transition under presteady state conditions.
3.On the interaction between amiloride and its putative alpha-subunit epithelial Na+ channel binding site.
Kashlan OB1, Sheng S, Kleyman TR. J Biol Chem. 2005 Jul 15;280(28):26206-15. Epub 2005 May 20.
The epithelial Na+ channel (ENaC) belongs to the structurally conserved ENaC/Degenerin superfamily. These channels are blocked by amiloride and its analogues. Several amino acid residues have been implicated in amiloride binding. Primary among these are alphaSer-583, betaGly-525, and gammaGly-542, which are present at a homologous site within the three subunits of ENaC. Mutations of the beta and gamma glycines greatly weakened amiloride block, but, surprisingly, mutation of the serine of the alpha subunit resulted in moderate (<5-fold) weakening of amiloride K(i). We investigated the role of alphaSer-583 in amiloride binding by systematically mutating alphaSer-583 and analyzing the mutant channels with two-electrode voltage clamp. We observed that most mutations had moderate effects on amiloride block, whereas those introducing rings showed dramatic effects on amiloride block. In addition, mutations introducing a beta-methyl group at this site altered the electric field of ENaC, affecting both amiloride binding and the voltage dependence of channel gating.
4.Amino acid residues in transmembrane segment IX of the Na+/I- symporter play a role in its Na+ dependence and are critical for transport activity.
De la Vieja A1, Reed MD, Ginter CS, Carrasco N. J Biol Chem. 2007 Aug 31;282(35):25290-8. Epub 2007 Jul 2.
The Na+/I- symporter (NIS) is a key plasma membrane glycoprotein that mediates Na+-dependent active I- transport in the thyroid, lactating breast, and other tissues. The OH group of the side chain at position 354 in transmembrane segment (TMS) IX of NIS has been demonstrated to be essential for NIS function, as revealed by the study of the congenital I- transport defect-causing T354P NIS mutation. TMS IX has the most beta-OH group-containing amino acids (Ser and Thr) of any TMS in NIS. We have thoroughly characterized the functional significance of all Ser and Thr in TMS IX in NIS, as well as of other residues in TMS IX that are highly conserved in other transporters of the SLC5A protein family. Here we show that five beta-OH group-containing residues (Thr-351, Ser-353, Thr-354, Ser-356, and Thr-357) and Asn-360, all of which putatively face the same side of the helix in TMS IX, plus Asp-369, located in the membrane/cytosol interface, play key roles in NIS function and seem to be involved in Na+ binding/translocation.
Online Inquiry
Verification code
Inquiry Basket